
Design-Time and Run-Time Requirements

Modelling for Adaptive Systems

Kristopher Welsh M.Sc (Dist), B.Sc (Hons)

School of Computing and Communications

Lancaster University

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

September 2010

Design-Time and Run-Time Requirements Modelling for

Adaptive Systems

Kristopher Welsh M.Sc (Dist), B.Sc (Hons)

School of Computing and Communications

A thesis submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy

September 2010

This thesis explores the construction, enrichment and use of requirements models for

adaptive systems. This thesis proposes the enrichment of adaptive systems' requirements

models with additional tracing information, preserving the rationale behind configuration

decisions. The preserved rationale can be utilised at design time, allowing decisions to be

re-taken in the context of new or changed information and allowing for the identification

of areas of uncertainty in understanding. The preserved rationale can also be used by a

system itself, at run time, allowing it to adapt its behaviour to contexts not fully envisaged

at design time.

This thesis presents the ReAssuRE modelling process, which defines modelling

perspectives from which some classes of adaptive system may be viewed. ReAssuRE

models embed the described tracing information, and may be interpreted and reasoned

with by a suitably constructed system at run time. This thesis presents tool support,

allowing adaptive behaviour to be derived directly from ReAssuRE models. Finally, this

thesis presents proof of concept components that allow a system to reason with ReAssuRE

models, transforming them in response to monitored data, and derive new adaptive

behaviour.

i

Declaration

I declare that this thesis is my own work, and that the

work presented in this thesis is work completed by myself.

The work presented in this thesis has not been presented in

substantially the same form for a higher degree elsewhere.

Work that has previously been published was completed as

part of the doctoral program, and has been clearly identified

in all cases.

ii

Acknowledgements

This thesis represents the culmination of four years' work,

and the end of perhaps the most challenging and enjoyable

chapter of my life thus far. My most sincere thanks go to my

supervisor, Pete Sawyer, whose flawless instinct governing

when to let work take its course and when to reign in, has

made possible an achievement that for the longest time I

thought impossible.

In kijita, “Omwana ni wa bhone” means that a child's

upbringing belongs to the community, regardless of biological

parentage. If true, then a researcher's development may be

owed to an entire department. Those in the department such

as Nelly Bencomo, Danny Hughes, Gerald Kotonya, Andre

Oboler, Benjamin Green and Jane Holt have shaped my work

and development in countless ways, and to them I am forever

grateful.

iii

Table of Contents

1 Introduction..1

1.1 Overview...1

1.2 Motivation for Research..3

1.3 Research Objectives..5

1.4 Research Method...8

1.5 Novel Contributions..9

1.6 Scope of the Thesis..10

1.7 Structure of the Thesis..11

2 Background..13

2.1 Autonomous Systems and DASs...13

2.2 Domains Promoting Increasing Autonomy..16

2.3 Existing Systems..18

2.4 Existing Adaptation Infrastructures..23

2.4.1 Multi-Agent Adaptive Infrastructures..23

2.4.2 Architectural Adaptive Infrastructures..26

2.4.3 AI Planning for Adaptation..28

2.4.4 Explicit Programming Language Adaptation Support..29

2.5 Chapter Conclusion...30

3 DAS Requirements Modelling & Monitoring...32

3.1 Requirements Modelling..33

3.1.1 KAOS-based DAS Modelling..36

3.1.2 i*-based DAS Modelling..38

3.2 Requirements Monitoring...41

3.3 Chapter Conclusion...44

4 ReAssuRE Modelling for DASs...47

4.1 The LoREM Process..47

4.2 Level One Modelling...49

4.2.1 Recording Rationale with Claims...52

iv

4.2.2 Examining Assumptions with Claim Refinement Models.................................56

4.2.3 Benefits and Limitations...58

4.3 Level Two Modelling..65

4.4 Chapter Conclusion...71

5 ReAssuRE at Design Time...72

5.1 Traceability in ReAssuRE models...72

5.1.1 Change in DAS Requirements..73

5.1.2 Tracing Examples..77

5.2 Policy Derivation...96

5.3 Requirements Validation..105

5.4 Chapter Conclusion...109

6 ReAssuRE at Run Time...111

6.1 Run-Time Representation of ReAssuRE models..112

6.2 Assumption Monitoring and “broken” Label Propagation.......................................113

6.3 ReAssuRE m-DAS architecture..121

6.4 Uncovering Emergent Behaviour in m-DASs..126

6.5 Chapter Conclusion...133

7 Evaluation..135

7.1 ReAssuRE models for the GridStix System...138

7.1.1 Level-One Strategic Rationale Models...140

7.1.2 Level-One Claim Refinement Models..147

7.1.3 Level Two Models...151

7.2 Tracing Examples..152

7.3 Policy Derivation...161

7.4 Policy Simulation..164

7.5 Requirements Validation..167

7.6 Model-Driven Adaptation...175

7.7 Testing for Emergent Behaviour...182

7.8 Chapter Conclusion...188

8 Conclusions and Future Work..190

v

8.1 Research Questions Revisited...190

8.2 Research Hypothesis Revisited...193

8.3 Limitations...195

8.4 Future Work..197

8.5 Closing Remarks..199

Appendix A – Image Viewer's Adaptation Policy...200

Appendix B – GridStix Adaptation Policy...201

Appendix C – Annotated GridStix Claim Refinement Models..............................206

Appendix D – Pseudocode for Policy Generation..210

References..211

vi

Table of Figures

Figure 1: Kramer and Magee's Adaptive Architecture [3]..26

Figure 2: Level 1 LoREM SD Model for Adaptive Image Viewer...50

Figure 3: Level 1 LoREM SR Model for Adaptive Image Viewer's S2 Target System..........50

Figure 4: ReAssuRE Model of Image Viewer's S2 Target System...54

Figure 5: Claim using a “break” Contribution Link...55

Figure 6: Claim Refinement Model for Adaptive Image Viewer's S2 Target System..........57

Figure 7: Partial i* SR Model for Video Streaming System...59

Figure 8: Claim-Augmented i* SR Model of Video Streaming System.................................60

Figure 9: Claim Refinement Model for Codec & Bitrate for Video Streaming System........61

Figure 10: LoREM Level Two Model of Adaptive Image Viewer's S1-S2 Transition..........66

Figure 11: ReAssuRE Level Two Model of Image Viewer's S1-S2 Transition......................68

Figure 12: ReAssuRE Level Two Model of Image Viewer's S2-S1 Transition......................70

Figure 13:Transferred Elements of Adaptive Image Viewer's S3 Model..............................79

Figure 14: Final S3 Level One Model for Adaptive Image Viewer.......................................80

Figure 15: Claim Refinement Model for Adaptive Image Viewer's S3 Target System.........81

Figure 16: “Broken” Label Propagation in Claim Refinement Model..................................83

Figure 17: Adaptive Image Viewer's S2 Target System with Broken Assumption...............83

Figure 18: Adaptive Image Viewer's S2 Target System with New Claim.............................84

Figure 19: Adaptive Image Viewer's S2 Target System with New Cache Available............86

Figure 20: Claim Refinement Model with Rationale for Learning Cache in S2...................87

Figure 21: Complete Claim Refinement Model Supporting Learning Cache's Use..............88

Figure 22: Adaptive Image Viewer's S2 Target System with Learning Cache Rationale.....89

Figure 23: Simplified SR Model Showing Learning Cache's Selection in S2........................90

Figure 24: Simplified Claim Refinement Model Supporting Learning Cache's Use.............90

Figure 25: Adaptive Image Viewer's S2 Target System with Cost Contributions................91

Figure 26: ReAssuRE Model of Adaptive Image Viewer's S1 Target System.......................94

Figure 27: Adaptive Image Viewer's S1 Target System after Requirement Change............95

Figure 28: ReAssuRE Models of Adaptive Image Viewer's Two Target Systems.................97

vii

Figure 29: Snippet of Adaptive Image Viewer's Adaptation Policy......................................98

Figure 30: Screen-Shot of Policy Generation Tool..101

Figure 31: Screen-Shot of the Genie DSL Derivation Tool...102

Figure 32: Genie model of Adaptive Image Viewer's Adaptive Behaviour........................103

Figure 33: Uncertainty Propagation in S2 Claim Refinement Model.................................107

Figure 34: Modified S2 Claim Refinement Model...117

Figure 35: Level 1 SR Model of Image Viewer S2 with Alternate Claim...........................118

Figure 36: Claim Refinement Model for Image Viewer S1 With Alternate Claim............118

Figure 37: Level 1 SR Model of Image Viewer S2 after Claim Inversion...........................120

Figure 38: Level 1 Model of Image Viewer S2 after Removal Modification......................121

Figure 39: m-DAS Architecture Model...122

Figure 40: Single Monitoring Rule from a Monitoring Policy..123

Figure 41: Implemented Model Transformer Architecture..125

Figure 42: Annotated Claim Refinement Model for Learning Cache.................................130

Figure 43: Level-One Strategic Dependency Model for GridStix System..........................139

Figure 44: Level 1 SR Model of GridStix S1 Target System..141

Figure 45: Level 1 SR Model of GridStix S2 Target System..144

Figure 46: Level-One SR model for GridStix S3 Target System..146

Figure 47: Claim Refinement Model for GridStix S1 Target System..................................147

Figure 48: Claim Refinement Model for GridStix S2 Target System..................................148

Figure 49: Claim Refinement Model for GridStix S3 Target System..................................149

Figure 50: Level 2 Model of GridStix S1 to S2 Transition...151

Figure 51: Modified GridStix S3 Claim Refinement Model: Broken Assumption.............153

Figure 52: Modified SR Model for GridStix S3 Target System: Broken Assumption.........154

Figure 53: Modified SR Model For GridStix S3 Target System: New Rationale.................155

Figure 54: Modified Claim Refinement Model for GridStix S3: New Rationale................155

Figure 55: Level 1 SR Model for new GridStix S4 Target System......................................157

Figure 56: Claim Refinement Model for new GridStix S4 Target System..........................158

Figure 57: Level Two Model for GridStix S1 to S4 Transition..159

Figure 58: Screen-Shot Genie DSL Model Derivation Tool..161

Figure 59: GENIE Model of GridStix DAS Derived from ReAssuRE Models.....................162

viii

Figure 60: Tool Generating Adaptation Policies from ReAssuRE Models.........................163

Figure 61: Snippet of Generated XML Adaptation Policy..163

Figure 62: GridStix Simulator Display...166

Figure 63: GridStix S3 Claim Refinement Model with Claim Classification......................170

Figure 64: Snippet of GridStix Monitoring Policy...177

Figure 65: Modified GridStix S3 Claim Refinement Model..178

Figure 66: Modified GridStix S3 Strategic Rationale Model...179

Figure 67: More Extensively Modified GridStix S3 Claim Refinement Model..................180

Figure 68: More Extensively Modified GridStix S3 Strategic Rationale Model.................181

Figure 69: GridStix S3 Claim Refinement Model with Testing Claim Classification.........185

ix

Table of Tables

Table 1: Claim Contribution and Attached Link Inclusiveness..55

Table 2: Support for Traceability Requirements of Identified Change Classes....................77

Table 3: Command-Line Arguments of Policy Generation Tool..100

Table 4: Testing Scenarios Required to Cover the Categories of Claims............................131

Table 5: Claim Combinations for GridStix S3 Validation Scenarios...................................169

Table 6: GridStix Validation Scenarios by Target System...170

Table 7: GridStix Validation Scenario Reduction using Claim Classification....................172

Table 8: GridStix Test Case Reduction using Claim Classification.....................................186

x

1 Introduction

1 Introduction

1.1 Overview

Today's software is increasingly complex, consisting of ever larger numbers of distinct,

interdependent components. Furthermore, this software is increasingly expected to

operate in ever more changeable environments, which necessitates software of even

greater complexity. Autonomous systems that monitor, configure, tune and heal

themselves independently of human interaction are perceived as necessary to allow

systems to operate in volatile environments, and to mitigate this increasing complexity [1].

Although, for most tasks, completely autonomous systems are beyond our reach today, we

are creating systems that posses some ability to alter their behaviour as the operating

environment changes [2].

Dynamically Adaptive Systems (DASs), sometimes referred to as self-managed systems

[3], monitor their operating environment at run time, and adjust their behaviour to better

achieve system goals in response to detected changes. Many current DASs offer only a

finite set of potential configurations, and the only real autonomy is found in the system's

ability to select an appropriate configuration for the current environmental context.

Despite the potential for DASs to mitigate increasing software complexity, adaptive

behaviour is in itself somewhat complex. A state of the art DAS utilises a reusable adaptive

infrastructure to enable adaptation [2]. An adaptive infrastructure codifies per-application

adaptive behaviour in adaptation policies, which explicitly state which configurations are

to be used under which environmental contexts.

The rigidity in pre-specifying configurations and tying them to specific contexts

introduces a limitation in a DAS's adaptive capability: only environmental volatility

anticipated at design time can be addressed. To allow a DAS to tolerate completely

Page 1

1.1 Overview

unexpected environmental change, a greater degree of autonomy is required. There are a

number of ways in which a DAS may be able to operate with a greater degree of

autonomy: it could use some form of artificial intelligence (AI), for example. However,

merely increasing the level of intelligence underpinning configuration selection decisions

does not remove the limitation: the DAS is still only cycling through a number of pre-set,

human-specified configurations. To create a system that is genuinely more autonomous, it

is necessary for the DAS to devise and adopt configurations that were not pre-specified by

humans when it is faced with operating conditions outside those envisaged at design time.

There is an inherent danger in granting systems an ever increasing degree of

autonomy: that we lose the ability to predict their behaviour and that we can no longer

assure that the autonomously devised configuration is optimal, or even correct. How can

we expect to deliver assurance if we aren't even sure what the system will do? There

appears to be a fundamental trade-off between autonomy and predictability [4].

DASs present challenges to the software engineering research community in terms of

their potential scale and complexity. Software engineering is optimised for the design and

specification of systems that operate in steady, non-volatile environments, and for

verifying the behaviour of a constructed system to ensure that it really does behave as

expected. However, for a DAS these tasks have to be performed for each available

configuration, and each environmental context. For a DAS, the software engineering

workload can, potentially, be orders of magnitude greater than for a non-adaptive, so-

called static system.

This thesis presents the ReAssuRE modelling approach, which allows the behaviour of

a DAS to be modelled during the requirements engineering process. The models feature

enhanced traceability, which improves the changeability of the models. The potentially

poorly understood, volatile, nature of the operating environments in which DASs are

deployed, and the difficulty of predicting the behaviour of a DAS in these challenging

environments promotes changeability as a key concern for DAS requirements models.

Page 2

1.1 Overview

This thesis also introduces a new class of DAS, called a model-driven Dynamically

Adaptive System (m-DAS). This class of DAS uses design-time models to guide run-time

adaptation decisions, and is a natural application of the emerging models@run.time

paradigm [5] to DASs. This thesis demonstrates how ReAssuRE models can be used by a

m-DAS to devise new configurations in response to unforeseen environmental conditions

by combining components in combinations not prescribed at design time, whilst operating

in the same way as a DAS in the conditions for which the system was designed.

To address the autonomy vs. predictability trade-off, this thesis also presents a model-

directed testing approach, that uses model analysis of the ReAssuRE models constructed

for a m-DAS to identify scenarios that offer the potential to prompt a m-DAS to display

emergent behaviour. A means of analysing the likelihood of the scenarios occurring with a

view to directing limited testing resources to the most likely of these key scenarios is also

presented.

1.2 Motivation for Research

Systems able to configure themselves during installation, optimise their behaviour

during day-to-day use, heal themselves in the event of problems and protect themselves

from attack are a staple of science-fiction writers, and represent a utopian view of

computing shared by many [1] [6]. Today's reality is, however, somewhat different.

Systems are typically configured by hand in a process prone to error, with optimisation

occurring more frequently by means of maintenance performed whilst the system is

offline than in real-time by the system itself. System protection tends to come in the form

of designers anticipating specific threats and taking steps to mitigate them, although some

systems can adopt special modes designed to allow the system to continue operating when

attacked [7] We are also seeing systems that posses some ability to recover from error, or

at least posses a reduced functionality “limp” mode, activated indiscriminately in the event

of any serious error [8].

Page 3

1.2 Motivation for Research

Although the degree of autonomy described in the above scenarios is low, the

commonality among all of these lightly autonomous systems is the presence in each of an

alternate mode of operation, that the system adopts when appropriate. As such, it becomes

trivial to envisage a system with more numerous modes of operation, that can tolerate a

wider range of environmental variance. A DAS is a useful abstraction over this class of

system, with the term DAS imposing no restriction in the number, type or purpose of the

modes a system may adopt, or the frequency with which they are adopted. A more

advanced DAS offers a greater number of modes, tailored to a greater range of variability

in the operating environment, with greater intelligence driving the selection decisions.

Essentially, a DAS embodies the state-of-the-art in autonomic computing.

DASs are difficult to design and specify because each mode of operation in a DAS has

all of the complexity of a complete system, essentially multiplying the associated software

engineering workload. Furthermore, if the operating environment itself is volatile, this

volatility needs to be factored into the requirements engineering process, and there's the

issue of how the system is to decide which mode of operation should be used under each

environmental context. Combined, these factors increase the complexity of the

requirements engineering process and the research community is beginning to recognise

DASs as a class of system that require special treatment during the RE process [9] [10].

In much the same way as design and specification workload increases with the number

of modes of operation a DAS supports, the testing workload likewise increases

dramatically. Not only does each mode of operation need testing thoroughly, but also the

mechanism by which the need for adaptation is identified, the mechanism responsible for

selecting appropriate configurations, and the mechanism effecting adaptation need testing.

For a DAS designed as an aggregation of individual components, its configurations are

essentially different combinations of components selected from a fixed set. In such a DAS,

it may be possible to offer some degree of assurance by testing the individual components,

rather than complete configurations. This testing method offers only partial coverage, and

clearly impacts on the level of assurance it is possible to offer. Furthermore, this testing

method would only reduce workload in DASs in which the number of modes of operation

Page 4

1.2 Motivation for Research

is high and the number of distinct components is low. A DAS using other techniques may

require every mode of operation to be tested in much the same way as a complete static,

non-adaptive, system needs to be tested, thus creating an overwhelming testing burden.

The research is, therefore, motivated by three key concerns:

1. The difficulty in performing RE for a DAS

2. The difficulty in testing a DAS

3. A deficiency in the ability of a DAS to adapt to environmental contexts not

envisaged, understood and designed for prior to deployment.

1.3 Research Objectives

At its highest level, the research aims to improve the Software Engineering support

available to autonomous system developers. More specifically, the research aims to

improve modelling support for DASs during the Requirements Engineering process, and to

maximise the usefulness of the generated models later in the software engineering process,

potentially even at run time.

The later use of requirements models that is targeted by this thesis is in controlling the

adaptive behaviour of a DAS. The adaptive behaviour of a DAS is that concerned with the

configuration changes made in response to changes in the environment. This thesis

explores whether this adaptive behaviour is specified solely from configuration decisions

taken during the RE process, and whether enough information about the decisions can be

codified in a requirements model to allow the model to be used as a specification of a

DAS's adaptive behaviour.

If requirements models are to be used in this way, the purpose of the models will be

transformed from illustrative and communicative to prescriptive. Thus, the issues of

accuracy and currency become crucial: an erroneous or out of date model will yield

Page 5

1.3 Research Objectives

improper behaviour from the deployed DAS. The ability to re-visit a model after a

requirements change, for example, allowing the analyst to establish whether changes are

necessary and make them, becomes essential.

The use of a collection of requirements models at run time, to guide a DAS's

adaptation, would involve the DAS itself analysing the models, adjusting them in response

to environmental changes, and using the changed models to prescribe new adaptive

behaviour. As discussed in Section 1.1, this additional autonomy comes at a price of

predictability. Delivering assurance in a relatively unpredictable system operating in a

volatile environment is challenging. This thesis explores how the degree of assurance that

can be offered with incomplete testing coverage can be maximised.

As such, the research aims to answer the following questions:

1. To what extent is a DAS's adaptive behaviour merely a derivation of

environmental analysis and configuration decisions?

2. Can the information from the environmental analysis and configuration

decisions be codified in models, and is it useful to do so?

3. Given that both the information from the environmental analysis and the

configuration decisions are subject to change, how can the workload of

deriving a DAS's adaptive behaviour be reduced?

4. How can a system be designed with a greater degree of autonomy than

current state-of-the-art DASs, and is the extra autonomy useful?

5. How can the testing workload be managed in systems with greater autonomy?

The extent to which a DAS's adaptive behaviour is a derivation of environmental

analysis and configuration decisions is a key issue. If entirely, it becomes possible to

reduce the workload in prescribing the adaptive behaviour explicitly using a specification

document by using a model instead. The workload associated with actually creating the

Page 6

1.3 Research Objectives

DAS's adaptive behaviour could even be eliminated if it is possible to perform the

derivation automatically.

If the adaptive behaviour of a DAS can be derived from the results of environmental

analysis and configuration decisions, then it would be desirable to capture both pieces of

information in some kind of model. Deriving adaptive behaviour from the model should

be both efficient and repeatable, and would allow the DAS's behaviour to be altered in

response to changes in the model or the underlying understanding. The second research

question is concerned with this adaptive behaviour modelling.

The third research question is concerned with automating the derivation of a DAS's

adaptive behaviour directly from the models mentioned in the second research question.

Automating the derivation of adaptive behaviour would not only reduce workload

associated with the task, but also offer the possibility of allowing a DAS to perform the

derivation autonomously, in response to changes in its own models.

The fourth research question stems from the suggestion made in the previous

paragraph. If a DAS can change its own model in response to deficiencies in the model or

changes in the environment, and can derive its own adaptive behaviour from the changed

model, this new system would offer a greater degree of autonomy than current DASs. The

question of whether this extra autonomy could prove useful will require analysis, and the

question of whether the extra complexity introduced by the autonomy will justify any

extra usefulness will remain.

The fifth and final research question concerns the testing of a system with greater

autonomy. The testing of a DAS is already vastly more challenging than for a non-

adaptive, static system in terms of scale. Increasing a system's autonomy further will likely

compound this problem, and may place the complete testing of such a system beyond the

realms of feasibility for all but the simplest systems, and all but the biggest budgets.

Page 7

1.4 Research Method

1.4 Research Method

Most research in the broad field of Software Engineering can be characterised as either

qualitative or quantitative, although it is common for research to exhibit features of both

paradigms [11]. Quantitative research focusses on the collection and analysis of measured

numerical data, with underlying trends identified by deduction and compared to a testable

hypothesis, disproving or supporting it. However, there are many research topics within

Software Engineering which provide little or no opportunity for quantitative analysis, or

for which quantitative analysis of available numerical data would offer limited insight.

Research practice in these areas typically follows a qualitative approach, which is more

subjective, involving the interpretation of data to refute or support a theory. As such,

there is no single well-established research approach in the field of Software Engineering

[12] or more specifically Requirements Engineering.

This thesis's work lies within the modelling methods area of RE, which is more of a

synthetic discipline than analytic. Synthetic disciplines are concerned with invention and

improvement, whereas analytic disciplines are concerned with discovery [13]. The

modelling methods research area concerns itself with the invention and improvement of

mechanisms for representing systems through part or whole of the RE process, or indeed

later into the Software Engineering process. The hypothesis typically under test in such

research is that the invention or improvement will prove useful in some specific context.

In this light, this thesis's hypothesis is:

When performing early-phase RE for a Dynamically Adaptive System, the

recording of additional tracing information will better support change later in the

software engineering process. Recorded tracing information can be used during

development to derive the adaptive behaviour of a DAS (the concern of switching

from one configuration to another as the environment changes), and by the DAS

itself after deployment to better adapt to unforeseen conditions.

Page 8

1.4 Research Method

 This thesis argues that the volatile and uncertain nature of DASs' operating

environments promotes the importance of an effective and efficient change management

process, and offers increased potential for a deployed DAS to encounter conditions that

were not envisaged a priori.

To test this hypothesis, this thesis uses two case studies. The first, is an illustrative case

study to demonstrate the method and its potential benefits, providing proof of concept.

This case study was introduced in [14] to provide proof of concept of the ability of DASs to

tolerate contextual variability, so it is fitting that methodological support for such systems

is depicted in the same terms. The second case study assesses the method's relevance and

scalability in a larger, real-world DAS. There are only a limited number of DAS exemplar

systems, and a desire to validate the method's benefits on a real-world system colours the

choice of second case study.

The use of case studies to validate work that by nature is both synthetic and qualitative

is discussed by Perry et. al [15], who argue that case studies are well suited to

methodological research. They argue that case studies are well suited to answering

questions of how and why a method works, is used, or can be improved in real-world

settings in which there is little experimental control.

1.5 Novel Contributions

This thesis presents the ReAssuRE modelling process, which features enhanced

traceability; promoting ease-of-change throughout the RE process and beyond. The

models are also amenable to automated analysis.

Demonstrating the ReAssuRE models' amenability to automated analysis, this thesis

presents the TelosTools model parser, which allows existing ReAssuRE models to be

formalised, loaded, understood and reasoned with either by a DAS itself at run time or by

specialised tools, which offer the possibility of developing tool support for checking, using

and reasoning about ReAssuRE models. One such tool, designed to support the hypothesis

Page 9

1.5 Novel Contributions

introduced in Section 1.4, generates so-called adaptation policies automatically from a set

of ReAssuRE models. Adaptation policies are used by some adaptive infrastructures to

codify a DAS's adaptive behaviour and are discussed further in Section 2.4.1.

Although DASs are a significant class of system in terms of autonomous systems

research, the level of autonomy offered is currently relatively low, as highlighted by the

third motivating concern presented in Section 1.2. Addressing this deficiency, and

utilising the ability to derive adaptive behaviour from ReAssuRE models discussed

previously, this thesis introduces a new class of autonomous system. A model-driven DAS,

or m-DAS, uses design-time models such as ReAssuRE models to guide its run-time

adaptation. This thesis demonstrates that this new class of system possesses some limited

ability to redress deficiencies or errors in the design-time models, modify the models, and

derive new adaptive behaviour from the modified models.

This thesis presents a model-directed testing method by which scenarios that do not

offer the potential for a m-DAS to derive new adaptive behaviour, and thus offer no

potential to display emergent behaviour, can be discarded. The remaining scenarios can be

categorised by likelihood in order to allow limited testing resources to be directed at the

most likely of the scenarios that could potentially uncover emergent behaviour. This

pragmatic approach would allow some level of assurance to be afforded an autonomous

system through testing, without requiring the impossible individual testing of every

possible combination of environmental factors and configurations.

1.6 Scope of the Thesis

This thesis focusses primarily on requirements modelling for dynamically adaptive

systems. Although this thesis seeks to make a contribution to the requirements

engineering of autonomous systems as a whole, the modelling approach presented is

designed specifically for DASs. This thesis discusses requirements engineering for systems

Page 10

1.6 Scope of the Thesis

with greater autonomy, and presents one such class of system. However, the class of

system presented are an evolution of DASs, rather than a revolutionary new system.

Also, requirements traceability for, and the testing of DASs, are discussed at length,

but this discussion is constrained to the potential benefit derived from the early-phase

requirements modelling approach. The modelling approach itself may also be applicable to

non-adaptive systems, still delivering benefit in terms of traceability which may be

valuable in some classes of system. However, no work has been undertaken to assess the

approach in non-adaptive systems, and no claims of suitability are made.

This thesis concerns itself solely with environments that can be partitioned cleanly

into distinct contexts, enabling a specific configuration to be tailored to a defined set of

environmental circumstances. This thesis makes no claim that all problem domains for

which a DAS could be conceived can be partitioned as such, and this focus introduces a

key limitation to the work. There are approaches to designing, specifying and delivering

autonomous systems without this limitation, but work is at an early stage, with reference

to it made purely to provide context.

It should be noted that even an environment well suited to partitioning is likely to still

have a relatively high degree of uncertainty in its nature. The act of partitioning further

increases the level of uncertainty with which the DAS has to operate, given the possibility

of the partitioning itself being sub-optimal. Although a DAS with greater autonomy may

be able to overcome some partitioning deficiencies, this potential isn't explored fully and

will be left to future work.

1.7 Structure of the Thesis

Chapter 2 of the thesis presents a literature review of the autonomous systems and

DAS research area as a whole, examining the scenarios for which which such systems are

conceived, how they are constructed and tested, and detailing the systems already in

existence.

Page 11

1.7 Structure of the Thesis

Chapter 3 presents a more focussed literature review, examining in detail the efforts of

the RE research community to support DAS specification with modelling techniques. The

LoREM modelling approach [16], on which much of the research is based, is detailed in

particular.

Chapter 4 presents the ReAssuRE process, detailing the extensions made to the existing

LoREM modelling approach, how ReAssuRE models are constructed and the information

they are designed to capture. The chapter also demonstrates how notation style affects the

precision, richness and complexity of the completed model.

Chapter 5 presents part of the thesis's first case study, focussing on the use of

ReAssuRE models at design time. The chapter demonstrates how the additional tracing

information codified in ReAssuRE models can be used to manage change, and to identify

areas of uncertainty in system or environmental understanding. The chapter also details

how adaptive behaviour can be derived from ReAssuRE models automatically.

Chapter 6 presents the second part of the proof-of-concept case study, continuing from

Chapter 5 and focussing on the use of ReAssuRE models at run time. The chapter

demonstrates the construction of a m-DAS capable of loading and reasoning with

ReAssuRE models to guide adaptation. Finally, the chapter details the model-directed

testing method by which a degree of assurance can be afforded to a m-DAS when testing

resources are too limited for complete testing.

Chapter 7 presents a larger, more complex case study in which the ReAssuRE process

has been applied to a real-world DAS to assess the effectiveness of the ReAssuRE Process,

with respect to the objectives of the research.

Chapter 8 concludes the thesis, drawing discussion to a close. The chapter includes a

brief summary of the thesis, and revisits the research questions, objectives and hypothesis

introduced in Sections 1.3 and 1.4. The chapter includes a discussion of the work's

limitations and potential future enhancements.

Page 12

2 Background

2 Background

This chapter presents a relatively broad survey of the autonomous systems research

area as a whole, to illustrate how DASs represent an important step towards fully

autonomous systems. As the chapter progresses, the focus shifts towards existing systems

that display some degree of autonomy, and the technology behind and examples of state-

of-the-art DASs. The state of the art with regard to software engineering support for DASs

is examined in the next chapter.

DASs are beneficial when dealing with volatile, uncertain environments. An ability to

adjust its own behaviour allows a DAS to operate effectively in a broader set of conditions

than a non-adaptive system, which means that a DAS can be created to operate in

environments for which it was previously thought of as infeasible to do so. As a result,

DASs are typically expected to operate in environments that are complex and changeable,

and often incompletely or misunderstood. Relatively few additional environments are

made feasible by considering a DAS, and the next section discusses the type of

environment for which a DAS is suitable. Also discussed are the broad types of adaptation

a DAS may utilise, and the types of environment each is more suited to.

2.1 Autonomous Systems and DASs

A system that is self-managing, self-configuring, self-tuning, self-repairing and self-

maintaining is a staple of science-fiction [10]; and the potential of such a fully autonomous

system is easy to see, with a particularly striking example presented by Oreizy et. al. [6].

These systems are, however, some distance away from becoming reality. At present, we

are starting to create systems that posses a limited ability to perform self-configuration as a

means to achieve a degree of autonomy. These relatively primitive autonomous systems

are termed self-adaptive, or dynamically adaptive systems.

Page 13

2.1 Autonomous Systems and DASs

McKinley et. al. [17] identified two distinct types of adaptive behaviour a system can

exhibit. The first, named “parameter adaptation” involves the modification of some

internal parameter or flag that causes the system to exhibit a change in behaviour. Such

adaptation is ideally suited for switching between a small number of pre-defined

behaviours according to fixed criteria. So-called context-aware systems [18] often utilise

this form of adaptation, which can be viewed as the more rudimentary form of adaptation.

Parameter adaptation's greatest weakness is that the system's behaviour must be

defined in its entirety at compile-time [17], along with the logic that determines the

switching between different behaviours, or more accurately the setting of the parameter.

As such, any change in the environment that was not envisaged at design time cannot be

adapted to without taking the entire system off line for code or components to deal with

the new environmental situation to be added.

A proposed adaptive system that is intended for operation in an environment that has

relatively few, but well understood variances, can take advantage of parameter adaptation

to minimise additional complexity. It could be argued that the only time that parameter

adaptation proves insufficient is when a system encounters an unforeseen context.

Although the system possesses some ability to adjust its behaviour, it remains relatively

“brittle” and has no means to adapt to the unexpected conditions. Unfortunately, this lack

of malleability could well cause the system to fail, and if dependability is an issue for the

proposed system, parameter adaptation could prove unsuitable. Thus, the use of

parametric adaptation depends on full faith being held in the environmental analysis. In

practice, as environmental complexity and uncertainty increases, parameter adaptation

scales badly, and other approaches are favoured.

More advanced forms of parameter adaptation can utilise artificial intelligence (AI) to

switch between available behaviours. Such approaches use machine learning techniques to

record effective combinations of parameters in certain situations for later re-use, and

reason with this knowledge to allow systems to configure themselves when encountering

previously unseen conditions.

Page 14

2.1 Autonomous Systems and DASs

Parameter adaptation encompasses so-called moded systems, which have been created

for some time. These systems offer several differing modes of operation, selected either

manually or automatically to allow some degree of flexibility in the system's operation.

For example, it is common for automotive engine management systems to posses a “limp

home” mode, which allows the engine to run with reduced power with the system in a

simple configuration in the event of serious error, allowing the vehicle to be driven home

before requiring repair. Parameter adaptation is, as such, not a new concept; its

importance being to contrast the second, emerging type of adaptation: compositional

adaptation.

The second type of adaptation is known as “compositional adaptation” or sometimes

“structural adaptation”. Compositional adaptation refers to the fact that the structural

elements that make up such a system can be swapped, rearranged or removed dynamically

in response to changes in context. A system utilising compositional adaptation can use

different combinations of these structural elements to radically alter its behaviour. Simpler

compositionally adaptive systems may still define the combinations of structural elements

that are to be used in which contexts explicitly and rigidly by hard-coding strategies.

More advanced systems, however, allow the strategies to be updated or adjusted at run

time supporting tuning and maintenance. More advanced still, it may be possible for a

system to develop the strategies itself, perhaps in response to some unforeseen or

previously unseen environmental conditions. There is a clear path by which systems using

compositional adaptation can operate with increasing autonomy.

State-of-the-art DASs rely on the specification of which structural elements are to be

combined in what manner under which contexts. The software, and more specifically

requirements engineering support for this process forms the focal point of much of this

thesis, and is discussed further in Section 3.1. The step forward (in terms of autonomy) to

systems that can develop or revise these specifications is another central theme, and is

discussed at length in Chapter 6.

A DAS's ability to tailor its behaviour to accommodate changes in context is analogous

to the system performing tuning or maintenance autonomously. However, a DAS's ability

Page 15

2.1 Autonomous Systems and DASs

to tune itself to some conditions, or to perform some maintenance online does not remove

the need to perform the tasks in circumstances outside those for which it was specifically

designed. In this respect, a DAS may have a wider operating envelope than a traditional,

static system, but there are still many potential sources of change that may necessitate

human intervention. Ideally, as system autonomy increases, so too should the system's

operating envelope, and the need for human intervention should decrease.

Software Engineering has been slow to support DASs explicitly. Regardless, there are

several domains in which we are seeing DASs created currently, and these are discussed in

the next section.

2.2 Domains Promoting Increasing Autonomy

The desire to operate in certain domains acts to drive the development of DASs. In

these domains, the expected operating environment exhibits significant volatility, and

systems are being developed with adaptive capability to allow them to function in the face

of uncertainty. This section discusses some of the more prevalent examples of domains in

which DASs have proven beneficial.

Perhaps the best known domain in which autonomy is becoming prevalent is that of

the network-centric system. In this context, software is increasingly expected to operate

on lossy, congested and sometimes unreliable wireless networks [19] [20]. In some cases,

software is expected to operate seamlessly atop several different network infrastructures,

which are switched between as available [21]. In all of these cases, the primary source of

design-time uncertainty is the level and quality of network connectivity, with adaptation

taking place to tolerate poor network performance and to best utilise faster, more reliable

network connectivity when available.

There has also been much work into developing systems for autonomously managing,

maintaining and best utilising so-called Quality-of-Service (QoS) in resource constrained

networks (e.g. [22] [23]). In this field, software is expected to adapt to maintain

Page 16

2.2 Domains Promoting Increasing Autonomy

functionality in the face of the potentially volatile availability of network resources.

When resources are scarce, applications deemed less worthy, either by their own labelling

as in [22] or by dictatorship as in [23] of network resources have their access to the

resources constrained or denied, but are expected to continue functioning to as great a

degree as possible. The QoS field, from an autonomy perspective, is analogous to the

network-centric systems field, in that adaptation is used as a means to mitigate network-

originating uncertainty.

A degree of autonomy has emerged in the service-oriented systems field. These

systems are particularly interesting because their use of adaptation isn't limited to

tolerating network-originating uncertainty. Autonomous, service-oriented systems use so-

called late binding [24] to allow units of work to be completed by different concrete

services. Thus, a decision to offload a given unit of work to an alternative service, can

result in a change in the overall system's observable behaviour. Using different underlying

services may affect overall response time, accuracy or availability [25] [26], for example.

The most promising approaches, from the perspective of autonomy, use brokers to

establish and potentially negotiate requirements [27], select appropriate services and

monitor requirement fulfilment [28] and switch underlying services to better achieve

these requirements [29]. All of these tasks map well onto the traditional requirements

engineering practices of requirements acquisition and negotiation, decision making,

requirements monitoring [30], and our concern: adaptation.

Another area in which systems are increasingly expected to perform autonomously is

that of fault-tolerant systems. These systems posses an ability to offer either complete [31]

or partial [32] functionality in the event of some failure. Here, adaptation is used to

replace, if continuing to offer complete functionality, or to operate without, if offering

partial functionality, the failed component. Although this style of behaviour would

typically fall within the scope of a moded system, it fulfils the definition of parametric

adaptation, as discussed in Section 2.1. It should also be noted, that as both the software

engineering practice supporting, and the technology underpinning compositional

Page 17

2.2 Domains Promoting Increasing Autonomy

adaptation improves, such functionality could be richer and more easily included using

the more advanced adaptation style.

Although the systems developed for all of these domains differ slightly in the goals

that each system's autonomy seeks to achieve; a commonality emerges: each of the systems

adapts to enable it to better attain a certain software quality, be it speed, availability or

reliability. These quality features would usually be represented at the requirements stage

by one or more non-functional requirements (NFRs). A system's ability to attain the

quality, or to fulfil the NFR, to any given degree is affected by changes in its operating

environment, be this a change in available network resources, the poor performance of a

service, or a software failure. In short, all of these systems adapt to best satisfy their NFRs

in changing contexts, as posited in [33].

2.3 Existing Systems

There are several existing DASs that have been created, each using adaptation as a

means to address specific problems. This section explores several of the systems

highlighting how each effects adaptation, and how this adaptation helps the DAS to better

fulfil its goals.

The first DAS examined is Lapouchnian et. al.'s adaptive image viewer [14]. This

simple application was designed as a pedagogical DAS to highlight the complexity of the

requirements engineering process in autonomous systems. The adaptive image viewer is a

simple application for viewing images, whose only adaptive capability is to introduce or

remove a caching component. Note that that such simplistic adaptive behaviour could

easily be created using parametric adaptation, but the authors chose to use compositional

adaptation so that the adaptive image viewer more closely reflected more complex DASs.

The adaptive image viewer introduces the caching component in an effort to reduce

latency when loading images for viewing, and removes it when the additional memory

required by the cache can no longer be spared. The adaptive image viewer operates in a

Page 18

2.3 Existing Systems

relatively simple environment, with a simple Boolean variance: “Is there enough memory

to use the cache?” The simplicity of the adaptive image viewer serves as a great asset when

illustrating Software Engineering support or construction techniques for DASs. This thesis

relies heavily on this example when introducing the ReAssuRE process in Chapter 4.

A good example of a service-oriented system that may be considered a DAS is

Robinson & Kotonya's navigation system [34]. The navigation system was designed to

showcase a quality framework for service-oriented systems, which makes an interesting if

domain-specific adaptive infrastructure. The service broker, which the navigation system

is designed to showcase, invites applications to request services including a specification of

several quality features the application requires the underlying service to meet. These

quality features are limited to a selection supported by the broker including latency,

availability and cost. The specification is matched with the details held by the broker on a

catalogue of available services, and if necessary the specification is negotiated to allow it to

be fulfilled.

Limiting the quality features that an application may request a service to provide may

seem restrictive, but doing so enables the broker itself to monitor service performance,

and to renegotiate with or re-bind services to the application if performance falls below an

acceptable level. It can be argued that all service-oriented systems operate in a relatively

volatile context. When some unit of work is provided by an agent outside of the system's

control it is natural to anticipate potential availability or performance problems, and

adaptation, in the form of late binding in this case, can provide a useful means to mitigate

this uncertainty.

One system illustrating this service and broker approach to adaptation is a navigation

system. The navigation system relies on external services to provide location data, road

maps, route calculations and points of interest to display on the map. Each of these

services are selected at run time from a pool of available services, with quality features

that fluctuate in line with network performance, service loading and the potential for

random failure. The navigation system negotiates with the service broker, and thus with

Page 19

2.3 Existing Systems

the service providers, to obtain all of these services at as low a cost as possible whilst still

maintaining acceptable performance and reliability.

Although the scope of Robinson and Kotonya's service broker is limited to service-

oriented systems, it represents a novel approach to autonomy, and adaptation as a whole.

The broker's ability to negotiate quality performance measures with both service providers

and the system is analogous to design-time decisions made when engineering systems

from scratch, and the performance monitoring aspect is near identical to requirements

monitoring work proposed by Fickas and Feather [30].

There is some work that uses adaptation to maintain availability of service-oriented

systems [25] [26] [35]. This work targets aggregate services, and in the event that one or

more of the individual services upon which an aggregate service depends fails, the

aggregate service adapts to replace the failed underlying service.

This section now examines two DASs performing the same function: a desktop e-mail

client, and both sharing the same source of contextual volatility: different users. The first

DAS, Fickas et. al.'s Think-and-Link e-mail system [36] was designed to be used by people

with cognitive impairments due to brain injury. These users will differ greatly from each-

other in ability to use the system, and the ability of each user may also change over time.

The email system uses adaptation to adjust its interface to cater for different users as they

use the system, according to profiles of each user's abilities provided by specialist doctors.

The profiles themselves are created and updated off line, away from the email system.

Some would argue that the off line creation of user profiles means the adaptation in this

case is more analogous to maintenance and tuning. However, the email system adapts its

behaviour when running to suit the differing needs of individual users automatically. Thus

the creation and updating of a user's needs profile is more analogous to pre-design

requirements elicitation.

The second DAS [37], performs a similar task for users without any specific medical

needs. Lapouchnian et. al's DAS is built using the popular open-source e-mail client:

Thunderbird [38]. The adaptive abilities of this email system are less radical, involving the

Page 20

2.3 Existing Systems

manipulation of options already present in the e-mail client to suit broadly specified user

preferences. A user's preferences are expressed in terms of high-level goals such as

“Prefers not to be interrupted” or the conflicting “Likes to answer e-mails quickly”.

Models of these high-level goals are transformed into personalised configuration profiles,

which Thunderbird uses to adapt, parametrically, its behaviour.

Despite the relatively low level of autonomy offered by the two e-mail systems, they

share a particularly interesting trait. Each system's adaptive behaviour is derived directly

from specifications of user requirements. The Think-and-Link system's user requirements

are obtained clinically, from patients' doctors, whereas the second email system's user

requirements are obtained from a high-level model. Each system's adaptive behaviour is

derived from its requirements offline, with analysts manually creating appropriate

configurations for individual users. By automating this process, and potentially allowing it

to be carried out by the DAS itself, there may be an opportunity for greater autonomy.

This is discussed further in Chapter 6.

Another good example of a DAS that has been built is Hughes et. al.'s GridStix system

[2]. This DAS takes the form of an intelligent wireless sensor network that monitors the

river Ribble in North-West England to predict flooding. The GridStix system operates in a

hostile environment, with a significant probability of individual nodes failing due to

submersion or physical damage from water-borne debris when the river floods.

Furthermore, the monitoring location is remote, with battery-backed solar power being

the only feasible option for powering the GridStix system. The tightly constrained power

footprint combined with the expense in terms of power of providing sufficient fault

tolerance to allow the GridStix system to operate in an adverse environment and to

provide accurate flood predictions means that a delicate balance needs to be struck, with

different fault tolerance mechanisms and flood prediction models used in different

circumstances. The GridStix system adapts by enabling the more power-hungry

mechanisms as the risk of flooding becomes more severe, and using more power-efficient

ones at times of little risk. The GridStix system is discussed in more detail in Chapter 7.

Page 21

2.3 Existing Systems

The GridStix system uses adaptation as a means to mitigate contextual volatility, which

originates from the river.

GridStix is interesting because the adaptation is both compositional, and performed

autonomously. The technology underpinning the GridStix system [39] discussed further in

the next section, is also fairly generally applicable, posing few restrictions on the type of

environmental parameters that may be monitored, or the structural elements of the

system that may be adjusted. As a result, the GridStix system is a short conceptual distance

from the general case, with other domains easily imaginable in terms of different

monitoring parameters and different software components.

One final DAS that has been proposed, but not yet implemented is Fraunhofer's

Adaptive Assisted Living (AAL) system [40]. The AAL system controls a number of

components throughout a house, aiming to ensure that the elderly resident is kept healthy

by ensuring adequate, and appropriate, food and liquid intake, and summoning help in

case of trouble. The AAL system uses sensors in the fridge to enable it to detect available

food, sensors in cups to monitor fluid consumption and motion, orientation and pressure

sensors to detect urgent medical problems. It is clear that in the AAL system, the major

source of contextual volatility is the resident themself, with it being almost impossible to

fully understand and predict the ways in which the resident will live their life and

interact with the AAL system. The proposed AAL system has been studied in detail [41],

by focussing on identifying individual, and often independent, potential adaptations that

the AAL system could use in different situations to ensure the resident's health.

The Adaptive Assisted Living system is interesting because of the large, open-ended

nature of the potential contextual volatility. Any software engineering support or

technology on which to base such a system needs to be able to handle a potentially large

number of variations of environmental parameters and system configurations.

Furthermore, with understanding of the AAL system's environment so incomplete, and

with it being likely to remain so until well after deployment, the AAL system presents

challenges in terms of ease-of-change, with flexibility and an ability to (re)tailor the

system to the resident as its usage changes being of significant advantage.

Page 22

2.4 Existing Adaptation Infrastructures

2.4 Existing Adaptation Infrastructures

It is perfectly possible, and not uncommon, for a DAS to be created with no formal

adaptation infrastructure, with the tasks of detecting contextual change, planning

adaptation to suit and effecting the planned adaptation intertwined with the DAS's

business logic. However, complex compositionally adaptive systems increasingly rely on

some form of adaptation infrastructure dealing with adaptive behaviour, with varying

degrees of adaptation and business logic segregation. The greatest segregation is typically

found in the infrastructures in which the adaptive behaviour is explicitly handled by a

separate software agent at run time. Approaches prescribing the design of a DAS

conforming to some logical architecture remove the need for a run-time agent, but do so

at a cost of removing the clear distinction between adaptive behaviour and business logic

afforded by the multi-agent approaches. Almost no separation is afforded by approaches

seeking to add explicit adaptation support to programming languages, either by retrofitting

existing, or developing new, specialised, languages. Each of these approaches is discussed

more fully in the following subsections.

2.4.1 Multi-Agent Adaptive Infrastructures

The term “multi-agent adaptive infrastructure” encompasses any middleware-based

approach, in which the middleware itself can be considered an independent software

agent performing adaptation-related tasks. The term also covers any broker-based

infrastructure, such as one underpinning many a service-oriented DAS. A multi-agent

adaptive infrastructure typically offers the greatest degree of separation between adaptive

behaviour and business logic, and also offers a means to reduce the complexity of the

adaptation logic by offering an existing agent capable of performing contextual

monitoring, adaptation planning and effecting off the shelf (for example, [42]).

Page 23

2.4.1 Multi-Agent Adaptive Infrastructures

There has already been some research effort on creating service-oriented architectures

with support for dynamic adaptation (e.g. [42], [43] & [44]), most typically aiming to

support QoS controls on multimedia streaming over a wireless or ad-hoc network. In

addition, there has also been work to develop a self-managing, adaptive content

distribution network that transcodes video & audio streams and reorganises itself

dynamically at runtime in response to the environment, and network conditions [45].

Each of these infrastructures offers an agent to effect adaptation, and some provide means

to monitor contextual change. None of these service-oriented architectures, however,

offers support for the planning of adaptation. DAS developers using one of these

architectures would still need to develop code explicitly requesting that the broker

performs a specific adaptation in specific circumstances. This weakness is not inherent to

service-oriented architectures, with Robinson and Kotonya's service broker performing

the task autonomously.

There are also a small number of adaptive service-oriented architectures that plan and

effect adaptation to maintain the availability of an aggregate service amidst the potentially

shifting landscape of available underlying services [25] [46] [35]. Each of these

infrastructures refers to itself as self-healing, and is limited both in domain; service-

oriented systems, and in purpose; adapting to improve availability. Additionally, there has

been work [47] offering an infrastructure to allow a service-oriented system to adapt to

minor changes in requirements.

There has been significant research into using adaptive middleware for supporting QoS

in multimedia distributed systems (e.g. [48] [49] [50]). There has also been some research

effort [51] on developing adaptive middleware to support combat systems such as self

guiding “smart” bombs and automated intelligence gathering aircraft. Although the

architectures differ in the level of support offered for all the identified adaptive behaviour,

each is domain-specific.

One of the first examples of a generally applicable dynamic middleware was

DynamicTAO [52], which is a CORBA Object Request Broker (ORB) retrofitted with the

ability to utilise different strategies to support “concurrency, request demultiplexing,

Page 24

2.4.1 Multi-Agent Adaptive Infrastructures

scheduling, and connection management” [52] specified at load-time. Although this

behaviour is essentially statically adaptive rather than dynamically adaptive, the work led

on to UIC-CORBA [53], which allows abstract components to be created at design time,

specialisations of which are dynamically loaded at runtime. Each infrastructure offers a

means to effect adaptation, but offers no support for contextual monitoring or adaptation

planning.

The OpenCORBA ORB [54] is another CORBA ORB that allows proxies to select

remote objects to invoke dynamically according their own logic. This dynamic invocation

facilitates the swapping of compatible objects at run time. However, as with UIC-CORBA,

there is no support for contextual monitoring or adaptation planning,

Lancaster's OpenCOM reflective framework [55] bears similarity in terms of adaptive

functionality to UIC-CORBA, although it is not a full middleware in itself. OpenCOM is

more of a component-based programming model, which allows components to be loaded

and unloaded, bound and rebound at runtime. Essentially, OpenCOM, OpenCORBA and

UIC-CORBA offer similar means to effect adaptation, with the same lack of support for

the other aspects of adaptive behaviour.

Built atop OpenCOM is Gridkit [39], a middleware designed for grid computing.

Gridkit is designed to run on a wide variety of devices, from wireless sensor networks

through to PDAs and desktop computers. Adaptation in Gridkit is achieved by swapping

out “Component Frameworks” and thus individual components, in configurations

specified in policies written in XML. Crucially, specified in the policies, are also the events

that are to trigger adaptation. Thus, Gridkit's adaptation policies codify the DASs

adaptation planning, reduce the complexity of contextual monitoring to the firing of

events, and OpenCOM's ability to effect adaptation is extended.

Typically, a DAS constructed using an infrastructure providing a distinct agent to

handle adaptation specify the behaviour of the adaptive agent using adaptation policies

(e.g. [39] [56] [57] [58]). These policies are written as Event-Condition-Action rules [59],

Page 25

2.4.1 Multi-Agent Adaptive Infrastructures

stating that a given adaptation is to be performed when a specific event is raised under

certain conditions, although a more expressive policy language may emerge in the future.

2.4.2 Architectural Adaptive Infrastructures

Some, notably Kramer and Magee [3] argue that although adaptive middleware is

helpful in composing a DAS, it lacks generality outside of the distributed systems domain,

and that adding language support for adaptation offers no abstraction and thus does

nothing to aid DAS design. More general approaches make use of a pre-set, generic,

transferable architecture separating different aspects of adaptation logic from the

application's business logic.

Kramer and Magee's approach borrows heavily from robotic system architectures,

following a three tier approach, as depicted in Figure 1. Each component is expected to

fine-tune its behaviour at the lowest level, the middle level implementing adaptation

based on strategies devised by the upper layer, which uses goal based reasoning.

Page 26

Figure 1: Kramer and Magee's Adaptive Architecture [3]

2.4.2 Architectural Adaptive Infrastructures

It is clear that the architecture in Figure 1 is well designed for the tasks of planning

and effecting adaptation. The task of detecting contextual change, however, is seemingly

left to individual components. Although individual components may be well placed to

monitor their own performance, monitoring of the environment as a whole, or some

specific aspect thereof, may be better performed at the system level. This approach offers a

useful template for DAS design, particularly if the system's adaptive behaviour is aimed at

tuning.

Oreizy et. al. [6] argue that a software architecture model of the components,

connectors, inputs and outputs of a DAS could be used by some sort of adaptive manager

to plan and effect adaptation. The models are produced specifically for this purpose, and

are updated by the DAS's adaptive infrastructure at run time. Although neither the

adaptive manager nor the infrastructure connecting components and updating the model

have been created, the use of a model to guide adaptation offers the possibility of

separating the tasks of planning and effecting adaptation from the business logic in the

individual components. It may also be possible to re-use an adaptation manager using this

approach across domains, if the architectural models used are not too domain specific.

White et. al. [60] focus on how individual components of a DAS should adapt their

behaviour in response to established policies and should interact with one-another. They

also look at how an adaptive infrastructure could allow the individual components, termed

“elements”, to find, monitor, aggregate, broker and negotiate between themselves. This

work promotes a more weakly-coupled, less systematic approach than the previous two,

with even greater control placed in individual components. It is easy to imagine a system

designed in such a manner offering a relatively high degree of autonomy but,

unfortunately, the level of complexity of both the adaptive infrastructure and the

components places systems using the architecture out of reach at present.

An architectural approach to DAS design essentially replaces a concrete adaptive

infrastructure with a template by which a bespoke one could be designed to suit a specific

DAS. Although an architectural approach typically offers a good degree of separation

between the DAS's adaptive behaviour and its business logic, the motivating concern

Page 27

2.4.2 Architectural Adaptive Infrastructures

behind the need for separation: explosive complexity, is ignored. A multi-agent adaptive

infrastructure offers the possibility of agent reuse, allowing the complexity associated with

adaptive behaviour to be dramatically reduced. It is for this reason that we are seeing

actual DASs created using multi-agent adaptive infrastructures rather than designed to

abstract architectures.

2.4.3 AI Planning for Adaptation

Several of the adaptive architectures discussed in the previous subsection rely on some

planning component to plan and devise adaptations to be effected. For example, the “Goal

Management” component in Figure 1 is responsible for devising change plans for the

“Change Management” component to effect. AI planners [61] offer the most promising

possibility for implementing such a planner, and could be use outside of a formal

adaptation infrastructure to plan adaptations in autonomous systems in general.

AI planners typically operate on sets of propositional formulae describing the initial, or

current, state of the world, some description of a desired state the planner should seek to

attain, and some description of available actions. The planner's output is a sequence of

actions, which when executed from the world's initial state will yield the desired state

One notable AI planner is NASA's Livingstone [62], which forms part of NASA's work

on so-called remote agents [63], which offer autonomous control of a spacecraft for

extended periods of time in a volatile, hostile, space environment. Livingstone uses

component-based declarative models to provide adaptive capability to allow fault

diagnosis, recovery and tolerance. Hardware failures aboard spacecraft are common, and a

successful mission depends on the spacecraft being able to withstand multiple component

failures, potentially interrelated.

The Livingstone planner depends upon formal models of a spacecraft's systems, and of

expected behaviour in all valid configurations. Plans are selected from those available on a

least-cost basis, where cost is expressed in terms of the expenditure of finite resources, for

Page 28

2.4.3 AI Planning for Adaptation

example propulsion fuel, or the use of irreversible actions, for example one-time explode-

shut valves. Thus, the Livingstone planner requires detailed knowledge of a DAS's

expected performance in a given configuration, and of the costs incurred in switching, or

maintaining a given configuration. This thesis' work concerns the use of requirements

models for DASs, which may be considerably less complete than the models required by

Livingstone. However, the ability to select configurations, and suitable adaptation plans to

transition to a new configuration from a set of those available is conceptually similar to

the model-driven adaptation discussed in Chapter 6.

2.4.4 Explicit Programming Language Adaptation Support

By adding explicit support for adaptation, a programming language can go some way to

reducing the additional complexity involved with a DAS. Although the use of an

adaptation-supporting programming language does not remove the need to explicitly code

the DAS's adaptive behaviour: detecting contextual change, planning adaptation to suit

and effecting the planned adaptation, it can reduce the workload associated with one or

more of these tasks.

Program Control Language, or PCL [64], is a set of language extensions for both C++

and Java targeted at allowing application programmers for distributed systems to specify

both when and how applications should adapt at runtime. The extension provides extra

language primitives, termed “adaptors” to allow classes to be swapped at runtime, values,

termed “metrics” to be monitored during execution” and events that may trigger

adaptation. These primitives can be used to reduce the complexity of detecting contextual

change and of effecting adaptation, but offer little assistance in planning adaptations in

response to detected contextual change.

Adaptive Java [65] augments the standard Java language primitives with additional

keywords to support the observing of runtime behaviour, i.e. introspection, and changing

this behaviour, i.e. intercession. The language is targeted at adaptive middleware

Page 29

2.4.4 Explicit Programming Language Adaptation Support

developers, much like OpenCOM [55], differing with the adaptive functionality

encapsulated within the language rather than an additional library. The language offers no

additional support for detecting contextual change or for planning appropriate adaptation.

It does, however, offer considerable support for effecting said adaptation.

Although Trap/J [66] and Kava [67] can be classed as language support, they are

targeted at augmenting existing Java applications with adaptive properties after

deployment, without modifying their source code. Although one would expect this

“clean” modification to a Java class' source code to require a modified Java Virtual

Machine (JVM), each approach adds adaptive capability by selecting classes that are to be

adaptable at compile time, and uses a special compiler to generate reflective byte code

associated with the selected classes. at run time, interfaces implemented by the newly

modified, adaptable classes may be used to modify system behaviour. Of all the

programming language based approaches discussed in this section, this shared approach

offers the greatest degree of separation of a DAS's adaptive behaviour and business logic.

The original system remains untouched, with an additional potential adaptive capability

added at compile time. However, code to detect contextual change, and to plan the newly-

enabled adaptation still needs to be created, external to both processes. As such, despite

the relatively high degree of separation, Each of Trap/J and Kava only mitigates the

additional complexity of effecting adaptation.

2.5 Chapter Conclusion

Despite the relative complexity of DASs serving to limit their adoption to scenarios in

which they will yield most benefit, DASs are being created to serve a variety of purposes.

The domains for which DASs are being built are characterised by volatile changeable

conditions. Different modes of operation are sometimes possible only in some conditions,

and the relative priority, and expected degree of satisfaction, of requirements varies in

tandem with the environment.

Page 30

2.5 Chapter Conclusion

Although there have been several (e.g. [65], [66] & [67]) attempts to create

programming languages with built in support for adaptation, there has been little adoption

of these languages. In a similar vein, there has been little adoption of the several adaptive

architecture designs proposed (e.g. [3] & [60] by which DASs could be constructed, and

adhering to one of these architectures could be eased with the use of an adaptive

programming language. Instead, the DASs actually being developed (e.g. [34] & [2]) are

using an independent agent to handle adaptation, in the hope that the agent can be re-

used, and to simplify development by separating the concern of adaptive behaviour from

the DAS's business logic.

Returning to the research aims discussed in Section 1.3, we can see that one of the

questions this thesis aims to answer is as follows:

To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

Section 2.4.1 discusses the fact that many a multi-agent adaptive infrastructures, or

more specifically adaptive middleware, typically utilises adaptation policies to codify a

DAS's adaptive behaviour. It is therefore possible to demonstrate a link between the

environmental analysis done, and decisions taken for a DAS by showing it possible to

derive an appropriate adaptation policy from the analysis.

Despite the emergence of DASs using some form of adaptive infrastructure to handle

their adaptive behaviour, and the benefit of separating this adaptive complexity from the

DAS's business logic, the specification, design and construction of DASs remains

extremely difficult. The next chapter reviews the state of the art of requirements

engineering for DASs, which faces a particular challenge in specifying variable or multiple

behaviours, when dealing with a complex and potentially incorrectly or only partially

understood operating environment.

Page 31

3 DAS Requirements Modelling & Monitoring

3 DAS Requirements Modelling & Monitoring

This chapter presents a somewhat narrower literature review than Chapter 2,

focussing on requirements modelling and requirements monitoring, two key and

intertwined aspects of DAS research.

One of a DAS's defining characteristics is its ability to monitor the environment,

enabling it to adapt its behaviour to better suit the prevailing operating conditions. It is

not, however, always possible to monitor the environment directly, and one source of

monitoring data may not be sufficient to reliably infer the current status of the operating

environment. In some cases, it is possible to monitor the degree to which a DAS's key

requirements are being satisfied, and use this data as a surrogate for more direct

environmental knowledge. In addition to this “surrogacy” use of requirements monitoring,

it can be argued that [33] fundamentally, all DAS adaptation is motivated by a desire to

strike a balance between conflicting requirements in changeable and uncertain

environmental conditions. From this viewpoint, requirements monitoring becomes a

cornerstone of the enabling technology for DASs.

If so much of a DAS's behaviour is motivated by the need to balance conflicting

requirements in changeable conditions, then it follows that in order to understand, design

and build a DAS it is necessary to have a complete understanding of the requirements, and

what constitutes an acceptable balance in different conditions. It is this problem that

requirements modelling for a DAS aims to address, with a strong consensus emerging that

goal-based requirements modelling methods are best suited to modelling the complex,

variable systems that attract the DAS moniker.

The following subsections discuss requirements modelling and requirements

monitoring in more detail, examining existing work applied to DASs.

Page 32

3.1 Requirements Modelling

3.1 Requirements Modelling

At the most general level, Berry et. al.'s work studying the type of RE done for (and

arguably by) DASs separates the types of RE into levels, with the more “meta” RE activity

done at the higher levels. The work doesn't discuss how each level could be modelled.

However, the level separation forms the basis of the modelling method discussed in

Section 3.1.2, and as such is discussed here in preparation.

Berry et. al.'s first level RE resembles the standard practice for non-adaptive systems,

and involves analysing the proposed DAS's operating environment, specifying the

functionality of the DAS as a whole, and crucially identifying all the potential

configurations the DAS may adopt, and analysing the circumstances under which each

should be adopted. The work terms the individual configurations target systems, and the

circumstances under which they are to be adopted domains. For ease of understanding,

this can be conceptualised as the operating environment being partitioned into several

domains, with a target system devised and specified for each.

Second level RE looks at how the DAS should distinguish between domains, and how

to identify the appropriate target system for each. If Level-One RE is concerned with

individual target systems, and how they are to behave in their given domain, then Level

Two RE is concerned with the DAS as a whole, and how the target systems are

amalgamated into the complete system. This is the level at which it can be argued that the

DAS itself is performing RE, but this thesis is concerned with only the activity

undertaken.

Third level RE looks at how the Level Two RE may actually be accomplished. It

involves specifying the mechanisms by which the data needed to distinguish between

domains may be obtained, and the mechanisms by which a target system deemed

appropriate may actually be adopted. Given that a DAS often relies on some form of

adaptive infrastructure to perform environmental monitoring and to effect adaptation,

Page 33

3.1 Requirements Modelling

Level Three RE often involves analysis of the capabilities of available adaptive

infrastructures.

Fourth level RE is the furthest removed from DAS behaviour, covering the

specification, development of and research into adaptation mechanisms in general.

Typically, the adaptation mechanism developers and the DAS developers will not be the

same people, and thus the Level Four RE occurs separately from the other three levels.

The majority of the research into DAS modelling focusses on the Level-One modelling

described above, and sometimes only offers partial coverage for the Level-One RE. For

example, Morandini et. al.'s work [68]on extending the Tropos [69] methodology involves

the creation of goal models to analyse the potential impact of the DAS adopting different

solution strategies, but doesn't offer any explicit means of modelling the circumstances

under which each may be preferable. Furthermore, environmental monitoring and the

mechanism by which different solution strategies are adopted are left completely external

to the modelling process. Other DAS modelling approaches can be clustered by the

underlying modelling techniques utilised, with work having been undertaken using both

the KAOS [70] and i* [71] modelling techniques. The work in each cluster is summarised

and discussed in Sections 3.1.1 and 3.1.2, respectively.

The research goal identified in Section 1.3 of attempting to derive a DAS's adaptive

behaviour directly from requirements models may seem distant, but attempts have been

made to derive other aspects of system behaviour and configuration from goal models

previously, with some success. Yu et. al. Have shown it possible [72] to derive feature

models and component interfaces from generic goal models created using the OpenOME

modelling tool [73], whilst Letier and van Lamsweerde have developed a method [74] to

derive operational specifications directly from KAOS goal models. Neither of these two

pieces of work focus on the derivation of adaptive behaviour from goal models, but do

show research interest in deriving lower-level artefacts using information contained in

relatively early-phase, high-level goal models.

Page 34

3.1 Requirements Modelling

There has also been some work looking into how best to write the requirements

specifications for a DAS. In RELAX [41] prescriptive and absolute modal verbs are

replaced with fuzzier, more malleable statements about the goals the system endeavours to

fulfil to as great a degree as possible. Requirements in the form of: “The system shall do x

as early as possible after y” offer a degree of flexibility in how the system chooses to fulfil

them, and offer the possibility of trading-off less complete fulfilment of one requirement

for more complete fulfilment of one or more others. The approach is underpinned by

formal semantics, essentially bridging between precise formalisms and high-level goal

modelling This approach is useful for recording requirements that the system as a whole

attempts to best fulfil, and may also be useful for describing adaptive behaviour. However,

if it is possible to derive a DAS's adaptive behaviour directly from models created earlier

during the RE process, this description may be unnecessary.

There has been some work that seeks to allow requirements models that encompass

estimated values for non-functional properties to be updated at run time with observed

values from a DAS [75]. Unusually, [75] uses Discrete Time Markov Chains (DTMCs) [76]

as the requirements model, and the functional properties being monitored apply to

service-oriented systems. The work mentions the possibility of a DAS reconfiguring itself

in response to changes in the model which, if exploited, would yield a model-Driven

Adaptive System (m-DAS), as discussed in Chapter 6.

Goal-based requirements modelling methods are attractive for DAS modelling, because

of their inherent ability to reason about alternate means of satisfaction for individual

goals, and the ability to reason about different ways of breaking down, or operationalising,

high-level goals into more precise, lower-level goals, which would typically illustrate

different solution strategies. This natural ability to analyse several different possible

solutions lends itself well to a DAS, which may well adopt several of the possible solutions

in different circumstances.

Page 35

3.1.1 KAOS-based DAS Modelling

3.1.1 KAOS-based DAS Modelling

KAOS [70] is a structured, goal-based requirements modelling method, that pays

particular attention to softgoals. Softgoals are often early manifestations of Non-

Functional Requirements (NFRs), which are often overlooked in other formalisms. NFRs

are particularly important for a DAS, given (as argued in [33]) that striking a balance

between conflicting NFRs in a variable environmental conditions is a key driver in the

decision to create a DAS over a non-adaptive system.

KAOS has a relatively well defined formalism, covering goals, softgoals, and domain

assumptions which will prove an advantage in performing model analysis and derivation.

The notion of obstacle modelling, which promotes reasoning about potential pitfalls and

impediments to goal satisfaction could also prove useful in modelling foreseen

environmental uncertainty, and in identifying areas in which uncertainty exists. However,

the role of formalism in KAOS also hampers the process of changing models as

understanding improves, by requiring change at both the model and formal level. Given

the complexity of the environments for which DASs prove most useful, and the likelihood

of inaccuracies and incompleteness in and of the understanding of the environment, a

significant workload in making model changes amounts to a substantial limitation.

Incomplete knowledge of the environment also serves to limit the benefit of obstacle

modelling, given that the impact only of (at least partially) foreseen obstacles may ever be

analysed.

There has been some work [77] [78] looking at ways in which individual adaptations

could be represented using KAOS, with Brown et. al. adding an additional linear temporal

logic (LTL) operator to the KAOS formalism to explicitly capture a change in the

requirements a DAS is to satisfy. The work builds upon earlier work [79] in establishing

LTL patterns for common adaptations (such as one-point adaptation, where one target

system stops execution, transfers state and a second target system commences execution),

with [77] essentially incorporating the patterns into KAOS models. Although the

possibility of deriving a DAS's adaptive behaviour (the concern of switching between

Page 36

3.1.1 KAOS-based DAS Modelling

behaviours in appropriate contexts) from the created goal models is identified, no method

to do so has been developed, with the work's focus being the specification of adaptive

behaviour. This work is unusual in focussing solely on the second level RE (as mentioned

in Section 3.1), with Level-One RE performed on a per-target system basis external to the

process.

There has been some work [80] also into the derivation of architecture models for a

DAS directly from KAOS goal models. The work explicitly highlights goal conflicts as the

motivator for adaptation (as in [33]), but unlike Brown et. al. [77] omits support for

representing a DAS's adaptive behaviour, focussing instead on deriving an architecture

that would support adaptive behaviour specified and created elsewhere. Furthermore, the

generated architecture model omits one of the crucial tasks in Level-One RE: analysis of

what behaviour should be adopted under which conditions. This prevents the work from

being combined with the previously discussed adaptation modelling to allow s DAS's

adaptive behaviour to be derived from a set of KAOS goal models.

Finally, there has been some work seeking to add support for reasoning about partially

satisfied softgoals to KAOS [81]. In practice, the softgoals that may only be partially

satisfied are goal-modelling representations of NFRs, for which it is difficult to establish

solid satisfaction criteria. This work is important, as DASs typically operate in

environments that prohibit the complete satisfaction of all the DAS's goals, - and volatility

in the environment prevents a single acceptable balance between them from being struck.

The work proposes that domain-specific objective measures of goal satisfaction are

proposed, and when deciding between different candidate goal satisfaction strategies, a

quantitative analysis of the options is performed using stochastically modelled, typical or

estimated data to reach a decision. Of course, the accuracy of the method is limited by the

accuracy of the underlying data, but the work does note that it may be possible to monitor

the data, and in a DAS it may be possible to adopt an alternate candidate if analysis of

actual measured data no longer supports the adopted goal satisfaction strategy.

To conclude, although there hasn't to date been any all-encompassing work in

modelling a DAS completely in KAOS, there has been a significant amount of work

Page 37

3.1.1 KAOS-based DAS Modelling

looking to model specific aspects of a DAS's behaviour. The behaviour of individual target

systems has been modelled in [80]with adaptations between target systems modelled in

[77]. DAS modelling support could be enhanced by including the partial satisfaction

reasoning method introduced in [81], allowing balanced “best fit” configurations to be

designed for different target systems in each domains. There is also a possibility of

designing a DAS with greater autonomy by granting it the ability to monitor the data

supporting the selection of “best fit” configurations, and re-making the selections in the

event of the data being demonstrably incorrect at run time.

3.1.2 i*-based DAS Modelling

i* [71] (pronounced I-star, and meaning “distributed intentionality”) is a goal-based

and agent-oriented graphical modelling methodology aimed at supporting high-level

reasoning during early-phase requirements engineering. There are several related

methodologies that extend or specialise i* for specific purposes, all (like i*) created at the

University of Toronto, for example: GRL [82] and Tropos [83]. By allowing a more

complete means of modelling, understanding and reasoning with the DAS, its constituent

parts and the environment in situ, i* seeks to enable thorough exploration of potential

solutions, and their potential consequences of their selection. There are two types of i*

model: Strategic Dependency (SD) and Strategic Rationale (SR). The two models are used

for slightly different tasks

In SD models, systems are modelled in terms of agents, goals and dependencies, with

models offering a high-level view of which parts of a (socio-technical) system depend on

which others to function. In i* terminology, an agent is either a human or automated

system component, a goal is something an agent seeks to achieve, and a dependency runs

from one agent (the depender) to another (the dependee) via the subject of the

dependency (the dependum). There are other elements that may appear on SD models, for

a full description see [71].

Page 38

3.1.2 i*-based DAS Modelling

In SR models, the rationale behind a goal satisfaction strategy may be analysed in

terms of tasks, softgoals and contributions. A task may be decomposed into one or more

sub-tasks, and tasks also serve a means to satisfy goals, when attached via a means-end

link. Softgoals are an important concept, representing a goal with no clearly defined

satisfaction criteria: essentially an early representation of an NFR. The completion of a

specific task may have one or more impacts on softgoals, captured with contribution links.

There are several different types of contribution link corresponding with the magnitude

and polarity of the captured impact. Selection of one task over another (that satisfies the

same goal) implies an acceptance of, or at least a preference for, its softgoal impact(s).

There have been several general-purpose i* modelling tools developed [84] [85], which

ease in the construction and validation of a SD or SR model. Some tools offer some limited

support for reasoning with a finished model, and this tool support can be leveraged to ease

requirements modelling for a DAS, as much as any other class of system.

There has been some work [86] [16] looking to model DASs using i*. The LoREM

process advocates creating i* models embodying the level 1-3 RE (according to the levels

defined in [10]) described in Section 3.1, allowing analysts to study a DAS as a whole,

reason about the configurations of each target system, understand the adaptations

involved in switching between target systems, and to understand what is required of the

adaptive infrastructure underpinning the DAS. The models created at each level are

discussed below:

At Level One, the method involves creating an SD model of the DAS as a whole,

illustrating the DAS in context, showing how it fits in with the environment, and which

stakeholders depend on the DAS to do what. Also at Level One, an SR model is created of

each individual target system, showing the configuration the DAS adopts and how it

balances conflicting softgoals in each domain. There has been additional work [87] [88]

augmenting these Level-One SR models with claims, which were first seen in the NFR

framework [89]. Claims make explicit the rationale behind a decision, with finer

granularity than simply recording a series of softgoal priorities in each domain. The use of

claims is discussed further in Sections 4.2.1 and 4.2.2.

Page 39

3.1.2 i*-based DAS Modelling

At Level Two, the method involves creating an SR model of each valid transition from

one target system to another. The model shows how the DAS' environmental monitoring

mechanism, the decision making mechanism and the adaptation mechanism work

together to achieve a specific adaptation, and shows the circumstances under which the

adaptation will be made.

At Level Three, the method involves creating an SR model of each of one or more

prospective adaptive infrastructures for the DAS. The DAS depends on the adaptive

infrastructure to provide the monitoring mechanism, decision making mechanism and

adaptation mechanism referenced in the Level-Two models, and it is here that these are

analysed. Each adaptive infrastructure will have different abilities to fulfil these roles, and

the choice of adaptive infrastructure could have far-reaching implications. At present, the

relatively small number of available adaptive infrastructures tends to mean that a DAS is

envisaged with a particular adaptive infrastructure in mind: in this case, the model serves

as a means to reason about the limitations imposed by this choice. With a more developed

ecosystem, the utility of the Level Three modelling will be in comparing different

prospective adaptive infrastructures.

There has been some work [90] also attempting to derive requirements from i* SD

models. By observing patterns in the dependencies between actors, it is possible to derive

(candidate) textual requirements for the dependee to fulfil the dependency, and for the

depender to expect the dependee to do so. In addition, some NFRs can be generated in

some circumstances, typically accuracy and timeliness NFRs in [90] – with the type of

requirements generated reflecting on the air traffic control domain used as case study. It

may be possible to generate other types of NFR in domains in which they feature more

prominently. The derivation in this work [90] is performed manually, although

automation is suggested.

Finally, there has been some work [91] looking to derive use cases directly from i*

models. Although this thesis is concerned with deriving adaptive behaviour from models

rather than use cases, Maiden et. al. [90] and Santander et. al. [91] show that there is

research interest in using i* models as a source to derive lower level artefacts from.

Page 40

3.1.2 i*-based DAS Modelling

To conclude, there is already some notable work [86] that uses i* as a basis for DAS

modelling, with the combination of goal and agent orientation considered useful for high

level reasoning during early-phase RE. There is also some research interest [91] [90] in

deriving lower level artefacts from i* models, as suggested with respect to deriving a DAS's

adaptive behaviour in Section 1.5.

3.2 Requirements Monitoring

Requirements monitoring is the recording and gathering of information from which it

can be determined the degree to which a system is meeting its requirements [30]. This is a

key ability, underpinning the capability of a DAS to tailor its behaviour to a volatile

environment. It is the ability to identify that the current system configuration isn't fully

meeting the requirements, along with the ability to identify a closer to optimal

configuration that allows adaptation to occur. Even when the possibility of performing

requirements monitoring was first raised, the idea of “realigning” the system in response

to the monitoring data was floated and it is arguable that this idea represents the origin of

the DAS as a class of system.

Feather et. al. [92]envisaged systems that monitor their requirements satisfaction, and

adopt an alternate goal satisfaction strategy in the event of the system failing to satisfy one

or more requirements. In this work, the goals and satisfaction strategies were modelled

using KAOS, with code to monitor system performance being created, and gathered data

analysed to establish whether reconfiguration is necessary. Although the behaviour

described is clearly similar to (and a subset of) DAS behaviour, there are some key

differences. These are discussed in the following paragraphs.

 Firstly, the systems described by Feather et. al. don't posses any knowledge of their

operating environment, and don't seek to detect changes in the environment. A failure to

satisfy a requirement could be caused by an unexpected change in the environment, a

deficiency in the system design, or a system fault; all are treated identically. The authors

Page 41

3.2 Requirements Monitoring

do, however, note that the system's inability to meet its requirements as expected could

indicate that the system is being used outside of its designed operational envelope.

Secondly, the systems described by Feather et. al. have no knowledge of which

potential alternate configuration is likely to perform best in any given scenario: the work

describes systems that have just one alternate configuration, and it is assumed that this

configuration will better suit all circumstances in which the first proves inadequate.

Combined, these leave the systems described by Feather et. al. possessing only some of

the adaptive capabilities assumed of a DAS. Essentially, the described systems are a DAS

operating in only two domains: expected and unexpected. The DAS adopts a fixed

configuration in the expected domain, and any inability to meet its requirements is taken

to mean a switch to the unexpected domain, in which a second configuration is used. A

useful analogy to this style of DAS is the “Limp Home” mode seen in automotive systems,

which allows automobiles to function sufficiently to get to a garage (or to get home) even

in the event of a fault.

The tricky decision of identifying requirements that the system could benefit from

monitoring is addressed by Robinson [93], who focusses on monitoring obstacles at

runtime. Obstacles are part of the KAOS ontology, and represent a condition that prevents

or hinders the satisfaction of a goal. For example, someone's efforts to clean their windows

may be hindered by the unavailability of hot water, thus their “Clean Window” goal faces

a potential obstacle of “No Hot Water”. The KAOS research community have worked on

the issues of the identification of, and reasoning with, obstacles [94], and Robinson argues

that it is the presence of these obstacles that should be monitored either directly or via

some surrogate property.

Robinson's work focusses on monitoring aggregate web services, which the authors

correctly argue offer the possibility of reconfiguring to use a different combination of

underlying services in response to the presence of an obstacle. Such a system would

certainly be classified as a DAS, with the configuration adopted in the presence of each

combination of obstacles (including the scenario without obstacles) being equivalent to a

Page 42

3.2 Requirements Monitoring

target system, and snapshots of the operating environment with each combination of

obstacles being equivalent to domains. A related and more general approach is presented

by Robinson [95], which applies the same concepts to traditional, non-adaptive systems.

The main weakness of the obstacle-driven process is that only those obstacles foreseen

and monitored for can be analysed and have a configuration devised for. Although the

problem can be mitigated using very broad obstacles that cover several different problem

scenarios. The use of broad obstacles may be beneficial, given that careful grouping of

specific obstacles under broader obstacles on the goal model could yield a reduction in the

number of target systems that need to be created. However, there will always be a risk of

an unforeseen obstacle preventing a goal being satisfied, and that the system will have no

means of recovery.

Building upon the requirements monitoring literature are the related areas of

requirements reflection [96] and requirements-aware systems [97]. Requirements

reflection proposes requirements that can be represented at run time, and the satisfaction

of which can be monitored directly rather than via some surrogate property. A

requirements-aware system is a system that maintains some run-time representation of its

own requirements, in order to reason with them (and trade-off conflicting requirements)

in changeable contexts at run time, using self-adaptation as the means to effect changes

identified as appropriate by the reasoning. The use of a requirements model at run time as

suggested in Chapter 6 is one method by which a system could achieve requirements

awareness, or be considered to be reflecting upon its requirements.

To conclude, requirements monitoring is a key enabling technology, underpinning the

ability to create DASs, with the requirements monitoring literature [30] [93] identifying

adaptation as a key potential benefit of runtime monitoring. There is a strong consensus

that the use of goal modelling allows the need for, and consequences of requirements

monitoring to be analysed, with several KAOS-based modelling approaches being devised

[77] [80]. The goal-based approaches proposed each use obstacle analysis to identify

properties to monitor, with the presence of obstacles being monitored in lieu of some

direct satisfaction metric for a specific requirement. Obstacle monitoring trades a fine-

Page 43

3.2 Requirements Monitoring

grained ability to analyse specific “what if?” scenarios with the ability to react to

unforeseen problems in satisfying requirements. By monitoring other environmental

properties, it may be possible to better adapt to less foreseeable conditions.

3.3 Chapter Conclusion

There is a strong research consensus that identifying and striking balances between

conflicting requirements is a key feature for any DASs, with Berry et. al. [10] going so far

as to argue that a DAS itself is performing some form of RE at runtime. At the very

minimum, a DAS is reasoning with, and adjusting its ability to satisfy different

requirements, if not monitoring them either directly or indirectly [92] [93]. Despite RE's

crucial role in supporting DASs, RE support for creating DASs is limited, and a need to

improve RE support for DASs has been identified as a notable research challenge by

Cheng & Atlee [9].

There is also a strong consensus that goal-based requirements modelling is well suited

to DAS RE activity, given the inherent ability to reason about alternative decision choices.

This ability is particularly useful for DASs, which may well adopt each of the alternative

choices in certain circumstances, as opposed to non-adaptive systems for which a decision

would be made during the specification process, and only ever revisited in performing

maintenance. As such, there has been a significant amount of research effort looking at

the use of goal-based requirements modelling for DASs [77] [80] [86]. Some techniques

focus on modelling potential adaptations, and scenarios for their use individually (e.g.

[77]), whilst some package several adaptations into a balanced strategy for a foreseen set of

environmental conditions (e.g. [86]).

One of the research questions raised in Section 1.3 is:

How can a system be designed with a greater degree of autonomy than current

state-of-the-art DASs, and is the extra autonomy useful?

Page 44

3.3 Chapter Conclusion

There appears to be a limitation in some of the goal modelling techniques used to

model DASs, perhaps dating back to the modelling performed in requirements monitoring

literature [92] [93]. Techniques based around an obstacle-modelling paradigm are limited

to analysis only of known and foreseen obstacles. Techniques based around domain

partitioning face a related problem, in that they are limited to analysis only of known sets

of environmental conditions (or combinations of monitored environmental properties). To

offer a DAS with a greater degree of autonomy, it will be necessary to at least partially

overcome one of these limitations.

Several pieces of the surveyed literature [92] [30] raise the possibility of a system

notifying stakeholders that it is operating outside of its designed operational envelope.

However, save for the recent requirements-aware systems literature [97], there is little

discussion of actually taking action in such circumstances. DASs offer the possibility of

taking corrective action when encountering an unforeseen environmental condition, be it

characterised as an unidentified obstacle, as a faulty assumption, or as an unexpected

combination of individually foreseen conditions. Furthermore, the chance of such a

situation arising is significant, given the complexity and relatively uncertain nature of the

environments for which DASs prove most beneficial. As such, this thesis seeks to go some

way towards demonstrating how a DAS can adapt when faced with unforeseen

environmental conditions.

At this stage, it is clear that some form of goal modelling would be useful for the

research, in that, with suitable extension, it would be possible to use goal models to record

assumptions made and decisions taken, and offer sufficient traceability to later identify

those that combine to specify the DAS's adaptive behaviour. Furthermore, it may be

possible for a DAS to reason with a goal model at run time to guide its adaptation. It is also

clear that extending some of the existing work modelling DAS requirements with either

KAOS [70] or i* [71] would be appropriate. The potential benefits of each technique are

discussed in the following paragraphs.

Using the KAOS-based technique [80] would bring with it KAOS's well defined

formalism, which may offer a more direct approach to offer a run-time representation of a

Page 45

3.3 Chapter Conclusion

requirements model. [80] also offers the useful obstacle modelling activity, for which

there is no equivalent in [86]. However, the level of integration of formalism in KAOS is

also something of a concern, given the likelihood of models undergoing potentially rapid

and iterative change during the RE process due to the relatively poor understanding of

typical DAS operating environments. Maintaining accurate, verified, and up-to-date

formal models of a DAS's expected behaviour during early-phase RE could prove

burdensome, and the models constructed are relatively complex, given KAOS' lack of

built-in agent orientation, which provides a useful means of abstracting over individual

DAS configurations by declaring the DAS in a specific configuration to be an agent.

The i*-based technique [86] [16], however, uses the domain and target system

abstraction [10], which offers a compelling divide-and-conquer approach to mitigating the

problem of DAS complexity. The agent-orientation of i* as well as bringing with it the

benefits discussed in the previous paragraph, also offers a convenient way of separating the

concerns and behaviour of DAS adaptive infrastructure from the DAS's adaptive

behaviour, and from the system's business logic. The substantial tool support for i*

modelling in general is also beneficial, limiting the task of providing tool support to one of

extension rather than creation. The limited formalism support in i* hinders model-

derivation and run-time representation type activity, and existing work modelling DAS

behaviour in i* is a little less mature than with KAOS.

The domain and target system paradigm used in [86], and first discussed in [10],

combined with the agent orientation of i*, offers the possibility of better limiting

modelling complexity than does the KAOS support, and it is this ability to limit modelling

complexity that has underpinned the decision to extend the i*-based process to address

this thesis's research questions.

Starting with the next chapter, this thesis presents its contributions, starting with a

detailed look at the extended [86] process, better supporting ease-of-change through

improved traceability, and discussion of how the models can be used to derive adaptive

behaviour, and how a DAS can achieve greater autonomy by itself using the models.

Page 46

4 ReAssuRE Modelling for DASs

4 ReAssuRE Modelling for DASs

The ReAssuRE modelling process centres around the recording of assumptions made

during the requirements modelling process, as eluded to by the full name: Recording of

Assumptions in RE. The LoREM [16] modelling process that the work extends, and i* in

general provides no means of recording the decisions made during the modelling process,

which is to some extent supported in KAOS [70]. By recording assumptions on DAS

models, it becomes possible to revisit them in light of changed information or new

understanding as necessary. This revisiting of previously made decisions can be by humans

later in the RE process, or potentially by the DAS itself at runtime.

This chapter details the ReAssuRE modelling process, focussing on the improvements

made over LoREM [16], and how the improvements offer the possibility of a DAS

operating with a greater degree of autonomy. The chapter discusses modelling at Levels

One and Two of the levels of RE for DASs identified in [10], with these first two levels

covering the adaptive behaviour of DASs. The chapter discusses benefits, drawbacks and

limitations before drawing its conclusion.

4.1 The LoREM Process

The ReAssuRE process is based on the existing LoREM modelling method [16]. To aid

in understanding how ReAssuRE models are created, used and how the ReAssuRE process

itself fits in with a wider requirements engineering program, this section describes and

discusses the underlying LoREM process.

The environment in which a DAS-to-be is to operate is partitioned into distinct

domains. This partitioning is no easy task, with individual domains needing to be foreseen,

with identifiable characteristics found to enable the DAS to identify the prevailing domain

in all circumstances. Errors made during this process are amongst the most difficult to

Page 47

4.1 The LoREM Process

rectify, requiring potentially multiple new target systems to be devised, or if border

conditions were incorrectly set, multiple target system designs to be revised.

Suitable environmental partitioning is characterised by a finite number of domains

being identified, each with monitorable conditions attached. The detection of an

individual domain's monitorable condition(s) signalling its prevalence. Furthermore, an

understanding of the way the environment will change between domains is required: can

some domains only be arrived at before or after another? At what measured value can it be

said the environment has changed from one domain to another? The results of this domain

partitioning are not recorded explicitly in model form, although it could conceivably be

beneficial to record them in a state diagram, for example.

LoREM modelling is not appropriate for systems and operating environments for

which this is impossible, and once this partitioning has been achieved the LoREM process

dictates the modelling of a target system for each identified domain. This modelling

features little variability, with an individual target system specified to operate in a single

steady domain. Decisions as to which individual configuration options, either the selection

of components or their configuration, are used for an individual target system are taken

before the overall configuration is recorded in a model. This modelling activity is referred

to as level-one modelling.

Level-two modelling concerns the transitions between specified target systems,

specifying the monitored condition that triggers the need to adapt, as well as the

reconfigurations performed as part of the adaptation. This modelling activity relies on the

border conditions identified during partitioning, and on the specification of individual

target systems recorded during Level One modelling.

Level three modelling is essentially modelling of the requirements for an adaptation

infrastructure to allow the environmental monitoring and target system transitions

described by the Level-Two models to be performed. This modelling activity relies on

knowledge of the monitoring and reconfiguration capabilities described in the Level Two

models.

Page 48

4.1 The LoREM Process

Although the literature on which LoREM is based [10] describes a fourth level of RE

performed for DASs, this covers research on adaptation mechanisms in general. Modelling

this type of abstract, generalised RE activity is of little value to an individual DAS, and

thus no modelling activity is associated with this Level Four RE in LoREM.

To conclude, LoREM can best be thought of as a series of modelling perspectives from

which a DAS-to-be is viewed. Although the reference to individual perspectives as “levels”

could be thought to imply an increasing level of abstraction, this is not the case. Level-two

modelling explores the requirements for transitioning between the target systems

modelled at Level One. Level-three modelling, in turn, explores the requirements posed

by the activity modelled at Level Two. The ReAssuRE modelling process improves upon

LoREM at Level One and two to provide richer tracing information which can be used

later in the requirements and software engineering processes, or by the DAS itself at run

time. The improvements made at Level One and two are discussed, in turn, in the

following sections.

4.2 Level One Modelling

The existing LoREM process [16] requires an i* Strategic Dependency (SD) model to be

created for the DAS as a whole. Additionally, an i* Strategic Rationale (SR) model is

created for each of a DAS's target systems, showing the configuration adopted in each

domain, how the prescribed configuration satisfies the DAS's goals, and the extent to

which the configuration satisfies the DAS's softgoals. From a tracing perspective, this

provides only limited information in the event that the decisions need to be re-examined

later in the RE process. Figure 2 and Figure 3 show a Level-One LoREM SD model of an

adaptive image viewer, and an SR model of an individual target system, respectively. The

adaptive image viewer was first described in [14].

Page 49

4.2 Level One Modelling

The adaptive image viewer is used here, and throughout the chapter as a simple DAS

to illustrate the concepts being discussed. The adaptive image viewer is an application

Page 50

Figure 3: Level 1 LoREM SR Model for Adaptive Image Viewer's S2 Target System

Figure 2: Level 1 LoREM SD Model for Adaptive Image Viewer

4.2 Level One Modelling

designed to display images to a user, loaded from a networked file store. The adaptive

image viewer uses adaptation to balance two conflicting concerns: the desire to minimise

memory usage, and the desire to maximise the speed at which images are loaded and

displayed. The DAS's only adaptive capability is to enable or disable a file cache, which

pre-loads images in an attempt to improve image loading speed, at the expense of

significantly higher memory consumption.

The Level-One SD model depicted in Figure 2 shows a high level view of the actors,

goals and dependencies in the adaptive image viewer. An overview of the syntax of SD

models is included on page 38. In this simple DAS, a user depends on the adaptive image

viewer to display images, and to do so as quickly as possible whilst using as little memory

as possible.

Figure 2 also depicts the DAS's two target systems, which reflects the DAS's operating

environment having been partitioned into two domains: low latency (referred to as D1)

and high latency (referred to as D2). The low latency domain is characterised by good

network performance, which means that the delay encountered when loading images will

be negligible. Conversely, the high latency domain is characterised by poor network

performance, which introduces a noticeable delay. For each of these domains, a separate

target system is devised, specified and created. The S1 target system is tailored to the D1

domain, and S2 for D2.

Figure 3 shows the LoREM Level-One model for the S2 target system, which is

intended to operate in the D2 domain. The DAS's goal is to “Display Images”, which can be

satisfied by completing the task: “Render Image Data”. The “Render Image Data” task can

be decomposed into: “Decode Data” and “Load Data”. In the S2 target system, the “Load

Data” goal is achieved by completing the “Use Cache” task, indicating the use of the file

cache in domain D2.

Given the likelihood of DAS' requirements models needing to be changed throughout

the RE process, as a result of uncertainty in and about the operating environment,

ReAssuRE seeks to offer improved traceability in DAS requirements models. Looking at

Page 51

4.2 Level One Modelling

Figure 3, it is possible to infer that a decision has been taken to require the adaptive image

viewer to use a cache when operating in the D2 domain, and that using the cache improves

the perceived speed of the adaptive image viewer whilst increasing memory usage.

However, it isn't necessarily possible to revisit the decision at a later date: there's no

record of the alternatives considered, or what their expected impacts on the softgoals

would be. In order to offer this kind of backwards traceability, it will be necessary to

record several things on the Level-One model:

1. The alternative goal satisfaction strategies considered

2. Their impact on the DAS's softgoals

3. The decision reached

4. The rationale behind the decision

Recording the alternative goal satisfaction strategies considered is merely a matter of

adding additional tasks representing the rejected alternatives to the model. The rejected

alternatives' impacts on the DAS's softgoals can be captured in the same way as the

impacts currently recorded: using standard i* contribution links. The reached decision can

be highlighted visually on the task representing the selected alternative. Recording the

rationale behind the decision, however, is a somewhat trickier task. This thesis presents

the idea of using claims to record this decision rationale, and it is this concept that is

discussed in the next section.

4.2.1 Recording Rationale with Claims

One of this thesis' contributions is the addition of claims to i* models as a means to

record the rationale behind a decision as well as its outcome, along with recording the

alternatives considered. The availability of this information improves traceability and

Page 52

4.2.1 Recording Rationale with Claims

allows decisions to be re-taken later in the RE process, or possibly even by a DAS itself at

run time. Claims are not a new concept: they formed part of the NFR framework [89], on

which i* is itself based.

 In the NFR framework [89], claims could be used for two purposes: to argue the

rationale behind an individual decision, or to support a softgoal prioritisation that can

affect multiple decisions. The second use, softgoal prioritisation, has an equivalent in the

related GRL ontology [98], but it is the first type of use that this thesis advocates for DASs.

The use of claims to improve traceability in DAS models has been published in [87].

There is a related concept in the i* ontology, called a belief. A belief is something an

actor in the system holds to be at least partially true, and like a claim it can be used to

affect a softgoal or contribution link. The principal difference between a claim and a belief

is that a claim is presumed true by the analyst whilst a belief is not. There is also a

syntactic difference, in that a Task may exert influence over a belief via a contribution

link, (or rather, the degree to which an actor holds the belief to be true).

Claims are used in two different types of model during the ReAssuRE process: in the

Level-One SR models created for each of a DAS's target systems, and in so-called Claim

Refinement Models (as introduced by the NFR framework [89]) to examine the basis of

assumptions. Returning to the Adaptive Image Viewer example discussed earlier in the

chapter, Figure 4 shows the Level-One SR model for the same S2 target system that was

depicted in Figure 3 on page 50. Unlike Figure 3, Figure 4 shows both of the alternative

satisfaction strategies for the “Load Data” goal considered, shows which strategy was

selected (“Use Cache”) and uses a claim to record a brief representation of the rationale

behind the decision.

Page 53

4.2.1 Recording Rationale with Claims

The claim “Extra Speed Needed In S2”, represented by a cloud-like shape in Figure 4,

uses a make contribution link, to assert the importance of the help contribution link

running from the “Use Cache” task to the 'Maximise Speed' softgoal. Given the importance

of this positive contribution, the “Use Cache” goal satisfaction strategy is selected over the

“Don't use Cache” strategy. The claim breaks the apparent deadlock in the contribution

links on the model, asserting that the extra speed gained by using the cache is of greater

importance than the memory saved in its absence.

The same rationale can be similarly represented using a claim that breaks a

contribution link on the model, as depicted in Figure 5. The contribution link used affects

the phrasing of the claim needed to convey the decision rationale, and in some cases the

accuracy and ease-of-understanding of the rationale recorded will differ between

notations. In this instance, the rationale expressed by the claim in Figure 4 is clearer.

Page 54

Figure 4: ReAssuRE Model of Image Viewer's S2 Target System

4.2.1 Recording Rationale with Claims

In this example, there is little difference between the two notations. However, the

type of contribution link a claim uses, and the polarity of the contribution link to which

the claim is attached can affect the claim's meaning on more complex models. Some

combinations of claims' contribution links and the links to which they are attached can be

described as inclusive and some exclusive, as represented on the table below:

Claim Contribution Type Attached Link Polarity Description

Make Positive Inclusive

Make Negative Exclusive

Break Positive Exclusive

Break Negative Inclusive

Table 1: Claim Contribution and Attached Link Inclusiveness

The combinations in Table 1 described as “Inclusive” have the effect of making the

task the “attached” contribution link relates to more likely to be selected, and those

Page 55

Figure 5: Claim using a “break” Contribution Link

4.2.1 Recording Rationale with Claims

described as “Exclusive” lead to the task being wholly or partly removed from

consideration. Inclusive claims are used to argue that a positive contribution is important

or necessary, or a negative contribution is insignificant. Exclusive claims argue a positive

contribution is insignificant or unnecessary, or that a negative contribution poses an

insurmountable problem. Using an inclusive notation allows the decision rationale to be

recorded with one claim, whereas exclusive combinations will require a claim to exclude

each rejected strategy. For decisions with more than two alternative goal satisfaction

strategies, there is thus a preference for recording rationale using inclusive claims where

feasible.

A claims is written as a simple statement of fact (in essence, the analyst is claiming

something to be true), which means that a claim can be characterised as a record of an

assumption being made. It is possible to examine the basis of a claim or an assumption

using a Claim Refinement Model. The use of Claim Refinement Models promotes

assumptions as first class entities à la KAOS, offering broadly similar reasoning capability.

These models are discussed in the next section.

4.2.2 Examining Assumptions with Claim Refinement Models

Claim Refinement Models were introduced in the NFR framework [89], and use a tree-

like structure to connect a claim under study with underlying claims (sometimes called

sub-claims) which represent the basis of the original, studied claim. Claim Refinement

Models are created on a one-per-target system basis in the ReAssuRE process, with a

single model allowing the (potentially interdependent) bases of all the claims on a target

system's Level-One SR model to be examined together.

A Claim Refinement Model serves as a record of the reasoning behind the claims on a

target system's Level-One SR model. Broad, high-level assumptions are shown on the

Level-One Claim Refinement Model and are broken down into smaller, more specific

assumptions and assertions about the environment or a decision alternative. These

Page 56

4.2.2 Examining Assumptions with Claim Refinement Models

assumptions and assertions are also modelled as claims on the diagram. Figure 6 shows the

claim refinement model for the Adaptive Image Viewer's S2 target system.

 Figure 6 shows that the “Extra Speed Needed in S2” claim, which supported the

decision to use cache in the target system's Level-One SR model in the previous section

(Figure 4), is derived from the conjunction of two underlying claims: “Latency is High in

S2” and “Caching will Improve Perceived Speed”. The “Latency is High in S2” claim is an

assertion on the environment, and given that significant latency is D2's defining

characteristic, this is a relatively safe assertion. On the other hand, “Caching will Improve

Perceived Speed” is an assumption about the performance of the file cache. This

assumption can be considered less safe, given that there may be some patterns of file

access the cache cannot predict (non-sequential viewing, for example).

The need for both underlying claims to hold in order for the “Extra Speed Needed in

S2” to hold is signified by the and relationship. Other valid relationships between claims

on a claim refinement model are or, make and break. A claim backed by two or more

claims connected with or relationships will hold if any of the underlying claims hold. A

claim single-handedly upholds another using a make relationship, and single-handedly

invalidates another using the break relationship, although the last two relationships are

less often used.

Page 57

Figure 6: Claim Refinement Model for Adaptive Image Viewer's S2 Target System

4.2.3 Benefits and Limitations

4.2.3 Benefits and Limitations

It is possible to use fine-grained contribution links to replicate the use of a claim in a

Level-One model in some circumstances, although to do so is essentially a misuse of i*

contribution links. The strength of a contribution link is intended to speak to the

magnitude of an element's impact on a softgoal, whereas a claim is used to speak to the

importance of an impact. The relatively small number of available fine-grained

contribution links (7: 3 positive, 3 negative and 1 neutral) means that some decisions and

associated rationale cannot be captured through the misappropriation of fine-grained

contribution links, as will be discussed shortly. Furthermore, if the models already

(legitimately) use fine-grained contribution links to capture impact magnitudes, it

becomes impossible to distinguish between “large” and “important” impacts.

Another method of recording decisions taken would involve assigning the softgoals on

a model a relative priority. For example, Amyot & Mussbacher [98] assign softgoals

numerical weights, and contributions to heavily weighted softgoals are lent additional

credence. There are two problems with this approach: firstly, it is very difficult to devise a

representative numerical scheme that captures the relative priorities of softgoals and

contribution links, and attempting to do so risks offering the illusion of quantitative

backing for what have, in reality, been subjective decisions. Secondly, there are some

combinations of decisions that cannot be represented in this manner. Figure 7 shows a

snippet of an i* SR model with two decisions affecting the same two softgoals.

Page 58

4.2.3 Benefits and Limitations

Figure 7 shows two decisions taken when specifying an online video streaming system

designed to allow viewers to watch a live sporting event. The two decisions concern the

same two softgoals: “Video Quality” and “Cost”. The analyst aimed to specify a system that

offers viewers the best possible video quality, but was working with a restricted budget.

The budget for the entire video streaming system was fixed, but the analyst had freedom

to assign budget between the video streaming server, the client software, bandwidth and

web design freely, which means that at the decision level, cost is a relatively ill-defined

softgoal.

The goal in Figure 7 named “Use Standard Video Codec” can be satisfied either by the

task “Use Theora” or “Use H.264”, with Theora [99] being free to use and the commercial

H.264 video encoder [100] offering better video quality. The goal “Offer Appropriate

Bitrate” can be satisfied either by the Task “Stream at 800kbps” or “Stream at 1200kbps”,

with there being a fairly linear relationship between the stream bitrate and bandwidth

costs. It was calculated that the cost of the commercial H.264 video encoder was roughly

equivalent to the cost of the additional bandwidth required for the 1200kbps video stream

for the expected number of viewers. The relative improvement in video quality offered

either by using H.264 or a higher bitrate was uncertain, so considered equivalent also.

Page 59

Figure 7: Partial i* SR Model for Video Streaming System

4.2.3 Benefits and Limitations

The eventual decision taken for the video streaming system was to use the free Ogg

Theora [99] video codec over the commercial H.264 encoder [100], but to offer the more

costly 1200kbps video to improve video quality.

Assigning different weights to the “Cost” and “Video Quality” softgoals depicted in

Figure 7 offers no way to reconcile the seemingly contradictory outcomes of the two

decisions. In the more general case, any approach that records decisions based on some

notion of softgoal priority will fail when handling multiple related, inconsistent decisions.

These inconsistent decisions are often made when dealing with a budgeted requirement,

which has a fixed satisfaction criteria across the system as a whole, but remains ill-defined

at the level of individual decisions. For example, systems with a maximum total weight,

cost or power consumption could all need to record decisions inconsistent with simple

softgoal priorities, given the need to stick to an overall budget.

The ReAssuRE method of recording decision rationale, using claims on a per-decision

basis allows inconsistent or directly conflicting decisions to be recorded, along with the

rationale behind them. The rationale of inconsistent or conflicting decisions is particularly

useful given its complexity, and particularly difficult to infer from models if not stated

explicitly. The same i* SR model augmented with claims allows the decisions to be

recorded, as depicted in Figure 8.

Page 60

Figure 8: Claim-Augmented i* SR Model of Video Streaming System

4.2.3 Benefits and Limitations

Figure 8 shows the decisions reached in each case, which cannot be achieved by

manipulating softgoal priorities. The claims also give a brief overview of the rationale

behind each decisions, which in this case are clearly inconsistent. The crucial factor in

these particular decisions was the possibility of costs being lower should fewer people

view the event, and the full rationale behind the two decisions is depicted in a Claim

Refinement Model in Figure 9.

Figure 9 shows the cost of the software necessary to provide H.264 video and the

working behind the bandwidth cost estimate. The model serves to explicitly highlight the

estimates of event duration and number of users, and to show the relatively perilous

nature of the decisions, given their reliance on estimates. The key assertion in the model,

however, is the claim stating that bandwidth cost [unlike the H.264 software cost] will fall

if there are fewer users than expected, which as stated previously underpinned the

decision to use the higher bitrate stream instead of better quality encoding for the video.

The greatest benefit of using claims to record decision rationale in Level-One models is

the enhanced traceability of the models with the claims added. Enhanced traceability is

useful when making changes to the models. There are many potential reasons that a DAS's

model may need changing: environmental knowledge may improve (or merely change), a

Page 61

Figure 9: Claim Refinement Model for Codec & Bitrate for Video Streaming System

4.2.3 Benefits and Limitations

recorded assumption may be proven false, a new potential goal satisfaction strategy may

be identified, a user requirements change, or even a need to make a change as a result of a

previous change. With a complex, volatile and possibly imperfectly understood operating

environment, these change drivers are likely to be encountered as least as frequently

when performing RE for DASs as when for traditional, non-adaptive systems.

Regardless of the reason for a model change becoming necessary, the ability to identify

the decisions affected by a change is crucial to an efficient change-management process.

The enhanced traceability of ReAssuRE models over LoREM models allows decisions

affected by a change to be identified, re-considered, and re-taken if necessary, which is

clearly useful.

As well as the ability to identify decisions and trace change impact, ReAssuRE models

allow the problem space to be explored by way of uncovering assumptions. The act of

constructing a Claim Refinement Model examining one or more claims forces the analyst

to think about the assumptions they have made in making decisions, and provides an

opportunity to validate newly uncovered (previously implicit) assumptions. The ability to

uncover previously implicit but now validatable assumptions can, potentially increase the

robustness of the eventual DAS's specification. For those assumptions for which validation

is impossible or infeasible, another of this thesis's contributions allows assumptions to be

monitored at run time, and for decisions reliant upon them to be re-taken by a DAS

autonomously in the event of one or more assumptions no longer holding. This

contribution is discussed further in Section 6.2.

Although the benefit of modelling decisions and assumptions with claims in terms of

traceability is applicable to the modelling of any system, this thesis restricts itself to DASs

for two reasons: Firstly, the complex, volatile and uncertain environments that DASs

prove most useful for mean that there is a greater probability of decisions having to be re-

examined or re-taken later during the RE process. Secondly, decisions taken during the RE

process for “partitioned” DASs, designed to operate in an environment that has been

partitioned into individual domains, are likely to be repeated in multiple domains. As

such, the rationale behind the decision in an individual domain is more likely to become

Page 62

4.2.3 Benefits and Limitations

lost or confused, given the presence of near-identical decisions taken in multiple other

domains.

The idea of recording key decisions and exploring the assumptions on which they are

based is shared with the notion of obstacle analysis in KAOS. However, the approaches

differ in style, application and their suitability for DAS modelling. Obstacle analysis

involves uncovering potential problems, threats or conditions that may block or impede

the satisfaction of a goal. After uncovering a potential obstacle, an addition can be made to

the model to mitigate the obstacle. The additions to the model eventually form part of the

system's specification, increasing its robustness.

At its core, the act of examining potential threats to the system's ability to operate

(using KAOS obstacle analysis) is similar to the act of examining the assumptions upon

which the specification relies (using claim refinement): any assumption not holding can be

thought of as an obstacle. There are two key differences, however, between obstacle

analysis and claim refinement. Firstly, obstacle analysis operates at a lower level, requiring

specific knowledge of a threat or condition that can prevent a goal being satisfied. When

performing claim refinement, the reason for an assumption's no longer holding is not

necessarily explored, which means that claim refinement can take place at an earlier stage

of the RE process, and with less concrete knowledge of the operating environment.

Secondly, the specificity of obstacle analysis allows an analyst to introduce specification

elements designed to mitigate identified obstacles. The higher-level nature of claim

refinement means that it is difficult to fully understand the causes of an assumption no

longer holding, and thus difficult to specify a specific solution.

For a DAS, the ability to explore assumptions at a higher level without the need for

specific, reliable and deep understanding of what is likely a complex, volatile operating

environment is clearly an advantage. However, the difficulty in exploring mitigation is

challenging. One of this thesis's contributions is a method by which the design of a DAS's

target systems may be modified in response to an assumption no longer holding either at

design time or at run time. This contribution is discussed further in Section 6.2.

Page 63

4.2.3 Benefits and Limitations

Some argue that the complexity of i* SR models hinders understanding, and ultimately

the models' usefulness. Thus, adding additional elements to the models, in the form of

claims, comes at a cost of additional complexity. Some i* modelling tools [84] [73] offer the

ability to view only relevant subsections of models, which goes some way to mitigating

the problem. In the LoREM process [16], a significant number of models need

constructing, which further increases the workload in their creation, a problem shared by

the ReAssuRE process. Models constructed at a single of the four levels of RE for a DAS

often have little in the way of variation, and in some ReAssuRE models, only the claims

differ.

One potential method by which to address this issue would be to offer a method by

which a single model could be constructed containing the model components applicable to

all target systems (at Level One) with different “dimensions” conditionally displaying only

the elements applicable to a specific target system. At its core, this idea is similar to the

method proposed by Lapouchnian & Mylopolous [101] to offer contextual variability in

goal models, with different target systems treated as contexts. This fits well, given that

claims record an assumption made about the environment, a DAS component or an

expected impact of a component's selection, and contexts in the work are defined as

“abstraction[s] over a set of environmental assumptions”.

According to Lapouchnian & Mylopolous, model components (elements and links,

which would naturally extend to claims) can be “tagged” to appear only (or not appear) in

one or more certain named contexts. Switching between contexts brings a different

dimension of the model into view. At present, however, no i* modelling tools support

multiple model dimensions, and their utility may be limited to high-variability models, of

which DAS models can be argued to be subset.

Another potential problem with claim-augmented SR models is that it is perfectly

possible to construct a model containing decisions for which the available alternatives are

known, but for which it is impossible to infer the selected alternative. This problem can

exist in any i* or similar model, and is known as deadlock. Although it is of course possible

to require all decisions to be supported by a claim breaking any deadlock, the possibility of

Page 64

4.2.3 Benefits and Limitations

a model being modified by the DAS at run time (discussed further in Section 6.2) opens

the possibility of the model becoming deadlocked. At this time, the only remedy to this

issue is through careful construction of ReAssuRE models, and allowing only deterministic

model modification to occur at runtime.

To conclude, the use of claims in DAS Level-One modelling is one of this thesis's

contributions, and forms the foundation of several of this thesis's later contributions.

Recording decision rationale, and the assumptions upon which they were based not only

improves traceability, but opens up the possibility of a DAS performing model

modifications at runtime in response to unanticipated environmental conditions, adopting

new configurations based on the changed models. The next section examines the

ReAssuRE improvements to the Level-Two modelling process.

4.3 Level Two Modelling

If individual target systems are modelled at Level One in the LoREM [16] process, then

Level-Two models concern a DAS's transitions between them. Level-Two models cover

the DAS's monitoring of its operating environment, the decision-making that uses this

monitoring information to identify changes in domain, and the adaptation triggered in

response to these domain changes, effecting the change to a new target system. Level-Two

models allow the analyst to understand the DAS's adaptive behaviour, and taken with the

Level-One models can offer a full picture of the DAS's behaviour in all expected

conditions.

The Level-Two models used in the ReAssuRE process have been adapted from those

used In the LoREM [16] process, aiming to make them more amenable to automated

analysis. The requirements posed by the need to be amenable to automated analysis (and

the analysis itself) is discussed further in Section 5.2. For this purpose, the Level-Two

models perform two key functions:

Page 65

4.3 Level Two Modelling

1. Define valid transitions between target systems

2. Define the conditions under which those transitions will occur

Defining the valid transitions between target systems is merely a matter of creating

Level-Two models for only pairs of target systems the DAS is to be able to transition

between. Invalid transitions, that is, those pairs of target systems the DAS shall not

transition between (or may do so only unidirectionally), are identified as such by there

being no Level-Two model associated with them (or only a single model for unidirectional

transitions).

The conditions under which a given adaptation is to occur is often referred to as a

trigger condition: some property of the environment or the DAS whose detection causes

the DAS to perform a given adaptation. Returning to the Adaptive Image Viewer example

used earlier in the chapter, Figure 10 shows a LoREM Level Two model for the transition

between target systems S1 and S2.

Page 66

Figure 10: LoREM Level Two Model of Adaptive Image Viewer's S1-S2 Transition

4.3 Level Two Modelling

The transition depicted in Figure 10 is the transition performed when the Adaptive

Image Viewer detects significant network latency, and introduces a file cache to improve

perceived performance. The transition occurs between the S1 (no cache) and S2 (cache)

target systems, as indicated by the “Adapt from S1 to S2” goal. The need to include a

(identically named) task performing the adaptation is syntactic, prescribed by the i*

guidelines [102], and is completed by in turn completing two sub-tasks: “Identify High

Network Latency” and “Introduce Cache”.

Earlier in the section, two key functions of a Level-Two model were identified.

Examining Figure 10 with respect to these, the model clearly allows the valid transitions

to be defined (by creating a model for each), but the circumstances in which the transition

should occur are only imprecisely defined by the high-level “Identify High Network

Latency” task. In order to better fulfil this second identified function, the Level-Two

model needs to offer a lower-level view of the conditions under which adaptation occurs.

The model also duplicates some information readily available on the Level One models:

the need to introduce a cache to transition between S1 and S2.

A lower-level view of the conditions under which an adaptation is to occur requires

some representation of the conditions monitored by the DAS to trigger adaptation and

what the trigger actually is. However, the monitored conditions and the adaptation trigger

are the responsibility of two different elements of the adaptive infrastructure: the

monitoring mechanism, and the decision-making mechanism. In Figure 10, these two

roles along with the adaptation mechanism are conflated into the “Adaptive

Infrastructure” actor, which plays all three roles in the adaptive image viewer. In some

DASs, these roles are played by different agents, - possibly with little knowledge of one-

another. Thus, it is advantageous to model the conditions monitored by the monitoring

mechanism, the trigger fired by the decision making mechanism, and the transition

effected by the adaptation mechanism. Figure 11 depicts a ReAssuRE Level Two model of

the same transition with this increased detail.

Page 67

4.3 Level Two Modelling

The three roles depicted in Figure 11 each have a goal to achieve: the monitoring

mechanism seeks to “provide monitoring data”, the decision making mechanism to

“trigger adaptation at the correct time”, and the adaptation mechanism seeks to “effect

adaptation”. These goals are the same for all transitions and for all DASs, with differences

between transitions occurring in their means of satisfaction. The monitoring mechanism,

in achieving the “provide monitoring data” goal furnishes the “monitoring data” resource,

which is needed for the decision making mechanism to complete its “analyse monitoring

data” task. The adaptation mechanism requires an “adaptation trigger” resource to be

furnished to be able to adapt in a timely manner, with responsibility falling to the decision

making mechanism.

The decision making mechanism is the most interesting part of the model in Figure 11,

depicting how the goal “trigger adaptation at correct time” is achieved. In the Adaptive

Image Viewer, adaptation is triggered by firing an event at the appropriate time, as

Page 68

Figure 11: ReAssuRE Level Two Model of Image Viewer's S1-S2 Transition

4.3 Level Two Modelling

represented by the “fire event when environment changes” task. This task is completed by

completing both the “identify environment switch from D1 to D2” task (which is in turn

completed by completing the task “analyse monitoring data”), and the “fire

HIGH_LATENCY event” task. It is this final task which explicitly states the adaptation

trigger required for the model to sufficiently define the conditions under which

adaptation is to occur.

In some DASs, it would be beneficial to provide additional detail in the “analyse

monitoring data” task, to explicitly state which monitoring values would indicate a need

to fire the adaptation trigger. However, for the purposes of policy generation (as discussed

in Section 5.2) this information is superfluous.

A ReAssuRE Level-Two model has the advantage of mapping more directly onto the

three separate roles that make up an adaptive infrastructure than a LoREM Level-Two

model. This allows the goals (and eventually requirements) of the individual roles to be

examined separately, which is important in a DAS where the roles are to be (or merely

may be) played by different concrete agents, or where the development of different

aspects of adaptive infrastructure is likely to later be split between teams. ReAssuRE

Level-Two models also provide more detail about the conditions under which a transition

between target systems is to occur, which is necessary to support the derivation of a DAS's

adaptive behaviour from models, as discussed further in Section 5.2.

These advantages, however, come at a price of complexity: in that ReAssuRE Level-

Two models are considerably more complex than their LoREM counterparts. This adds to

the modelling workload, and although this is of concern this thesis shows that the

workload saved in allowing automatic derivation of adaptive behaviour, and the ability to

trace errant adaptive behaviour back to its cause at the earliest goal modelling stages can

justify this extra workload. It is also worth noting that most ReAssuRE Level Two models

are similar (see for example Figure 12), offering the possibility of using templates of

common elements to reduce this workload.

Page 69

4.3 Level Two Modelling

The similarity between Figure 11 and Figure 12 also offers the possibility of the models

being conflated, with differing elements displayed conditionally depending on the

transition being viewed. This is essentially the same approach as discussed in Section 4.2.3,

with individual transitions being considered as contexts [101].

To conclude, ReAssuRE Level Two models are constructed with greater detail, and are

thus more complex, than their LoREM counterparts, which better enables automated

reasoning based upon them. There is also significant advantage in this extra detail when

dealing with DASs for which the three roles of an adaptive infrastructure (monitoring

mechanism, decision making mechanism and adaptation mechanism) are to be separated.

Page 70

Figure 12: ReAssuRE Level Two Model of Image Viewer's S2-S1 Transition

4.4 Chapter Conclusion

4.4 Chapter Conclusion

This chapter presented and discussed the ReAssuRE modelling process for DASs, with

a particular focus on changes made from the existing LoREM process. The chapter

presented claims, which are used to highlight a decision in Level-One Strategic Rationale

models, and to present the rationale behind it briefly. The chapter has also shown how the

assumptions underpinning decision rationale can also be modelled as claims and examined

in a claim refinement model. Finally, the chapter has shown how a DAS's transitions

between target systems can be modelled at Level Two in such a way that adaptation

triggers, which start a given transition can be identified for use later in the software

engineering process, when writing adaptation policies.

The next chapter discusses how ReAssuRE models can be used later in the RE process

aiding in managing requirement changes (demonstrating the enhanced traceability

discussed in this chapter), in writing adaptation policies, and in performing requirements

validation work.

Page 71

5 ReAssuRE at Design Time

5 ReAssuRE at Design Time

Chapter 4 introduces the ReAssuRE modelling process, using the adaptive image

viewer example. This chapter extends the adaptive image viewer example to demonstrate

the benefits of ReAssuRE models at design time. The chapter discusses the increased

traceability of the models, providing examples of the sort of tracing activity the models

support over and above their LoREM counterparts, along with their ability to support

policy generation, and to aid in performing requirements validation.

The feature underpinning all of the model uses discussed in the chapter is the

availability of extra tracing information, codified in claims in the models. Naturally,

additional tracing information aids traceability, but the ability to retrieve some limited

rationale aids also in identifying and exploring areas of uncertainty in the analyst's

understanding of a DAS's proposed operating environment. Although it would be possible

to perform the policy derivation discussed in Section 5.2 without information from claims

(and thus it would be possible to perform the derivation from LoREM models), the process

of identifying the proposed configuration for each of a DAS's target systems is simplified

by the claims' presence.

5.1 Traceability in ReAssuRE models

This section examines both the drivers for, and the consequences of changes in a DAS's

requirements models. The section is split into two along this divide, with the first

subsection discussing the types of change a DAS model is likely to be subjected to and

identifying the traceability requirements for ReAssuRE models to support change

management effectively for each type. The second subsection demonstrates how the

ReAssuRE models meet these traceability requirements, and support the tracing need. The

issue of change in DAS requirements models, and the ability of ReAssuRE models to cope

with this change has been published in preparation for this thesis [87].

Page 72

5.1.1 Change in DAS Requirements

5.1.1 Change in DAS Requirements

Changes can be required of a system at any stage during its design, implementation or

useful life. In a system that possesses no adaptive capability, these changes are made

offline by developers in the form of maintenance. A DAS, on the other hand, is able to

perform some of these changes autonomously, lending DASs to use in volatile domains

with shifting requirements and priorities.

 The nature of the problem domains for which DASs are conceived are such that a

DAS's operating environment may be only partially understood at design time. The novel

and emergent nature of the technologies upon which DASs are based also means that the

likelihood of beneficial new technologies emerging is high. A DAS may exhibit emergent

behaviour as it re-configures itself dynamically, in ways and under circumstances that

may have been hard to anticipate at design time. Thus, far from their adaptive capability

making them immune to the need for maintenance and re-specification, DASs are

particularly susceptible to it.

Ramesh and Jarke [103] sort users of trace information into two groups: high and low

level, depending on the types of use made of the information. Two of these uses are of

particular interest to DASs: 1. Tracing decision rationale and 2. Tracing for evolvability.

To allow decision rationale tracing, a record needs to be made of each the viable

alternatives considered, along with assumptions of the impact the selection of each would

have. Requirements evolution can occur due to a change in user needs, or due to an

identified deficiency in the system and requires the ability to understand how a

requirement came to be.

As requirements at different levels of detail change, the question “Where did this

requirement come from?” becomes harder to answer. Furthermore, given that these

requirements may form the basis of the justification for several decisions, each of which

will be repeated (with different environmental assumptions) for several target systems, a

change in requirements can have a widespread impact in a DAS. The likelihood of far-

Page 73

5.1.1 Change in DAS Requirements

reaching change impact means that tracing of decision rationale and for evolvability are

crucially important for DAS developers. Thus, DASs promote high-level tracing as

essential practice.

There are five main classes of change that a DAS's specification may need to be

adjusted for. Each needs handling differently.

1. Environmental Change

2. Faulty Assumption

3. New Technology

4. Consequential Change

5. Stakeholder Requirements Change

The following paragraphs discuss each identified class of change in detail.

Environmental change will be particularly common given the inherent volatility of

any DAS's proposed environment; which increases the likelihood of individual domains

being misunderstood, or entirely new domains being discovered. This class of change may

occur during any stage of the DAS's life cycle, and the need for change may be signalled

by a system failure if it emerges only after deployment. A change to the understanding of

a previously identified environmental domain will trigger the need to re-evaluate the

design decisions taken for it. The identification of a new domain will require a new target

system (and associated model) to be created, possibly based on that of another target

system.

When environmental understanding changes, the model for an entire target system

will need to be reconsidered, or created from scratch if a new domain has been discovered.

Essentially, this will involve re-making all the per-domain decisions (that is, those

Page 74

5.1.1 Change in DAS Requirements

decisions taken in each domain for each target system) in light of the changed (or new)

environmental knowledge. For this type of change, the only trace information needed to

effect the change efficiently is the ability to identify all the decisions taken for a given

target system, although a record of the rationale behind the decisions taken will allow

them to be re-taken more easily.

A faulty assumption may be an assumption about the environment in a given domain,

or an assumption about a given component's suitability for a particular domain. The

assumptions underpinning the Level-Two modelling are also classed as environmental

assumptions, and will affect several different levels of model. Assumptions such as these

may be broken as designers better understand the domain or the proposed DAS, or may

only become apparent after deployment. An assumption being found faulty triggers the

need to re-evaluate all decisions based upon it.

An assumption may be found faulty either by improved understanding of the

environment or available alternatives for a decision, or having been broken demonstrably

in the field. In either case, all of the decisions based on the faulty assumption will need to

be revisited. In order to facilitate this forward tracing, there needs to be a record of all

decisions reliant on the assumption, along with information on the alternatives previously

considered for each affected decision (including their perceived impact on the DAS's

quality features) to allow it to be re-taken.

The availability of an exploitable new technology, or more generally some newly

identified capacity or opportunity for the DAS, can be modelled as a new alternative for

some decision. Given the relative immaturity of adaptive infrastructures, this kind of

change will likely occur frequently. As with a non-adaptive system, designers need to

weigh the potential costs and benefits to decide whether to take advantage of the new

technology or not. However, for a DAS, the decision needs taking in each domain, and

reached for each target system. If the new technology is utilised in one or more target

systems, other decisions that impact on those quality features affected by the use of the

new technology in these target systems will need to be revisited, to provide an

opportunity to re-balance them.

Page 75

5.1.1 Change in DAS Requirements

A new decision alternative will require only a limited number of decisions to be

revisited. However, each decision may need to be revisited in each domain, for each target

system. As such, to support this backwards tracing, there needs to be a record of

alternatives previously considered for a decision, and a record of the rationale behind

previously reached decision.

Consequential change so named because the change is necessitated as a consequence of

a previous change. This kind of change will be particularly important in systems with a

“budgeted” requirement such as a maximum power consumption or maximum total

weight. In this case, making any of the previous types of change can require a re-

evaluation of previous decisions across all domains, trying either to bring the system back

down to budget if the change negatively impacted the budgeted requirement, or to more

fully utilise the budget if the change created headroom.

A consequential change requires the ability to trace across target systems all decisions

made that affected a given, budgeted requirement. As such, there needs to be a record of

which requirements are affected by which selection alternatives, to allow the analyst to

search through the system to find an acceptable change to trade-off against the previous,

necessitating change.

Stakeholder requirements change is of course not specific to DASs. However, the

impact may reach several target systems, essentially multiplying the workload involved in

making the change. User requirement changes are difficult to predict, and are also variable

in the extent of their impacts.

A stakeholder requirements change can potentially affect any or all target systems, or

may necessitate a change to a static (i.e. identical in all target systems) component of the

DAS. Therefore, as with user requirement changes to non-adaptive systems, the impact of

this type of change varies from case to case.

To summarise, this section has argued that potentially incomplete understanding of a

complex, volatile operating environment means that changes to a DAS's specification is

likely. It has presented five classes of change that a DAS's specification may be subject to.

Page 76

5.1.1 Change in DAS Requirements

Each class of change presents its own tracing requirements for the change to be effected

efficiently. Table 2 below summarises the traceability requirements for each class of

change, and highlights those that are met by the LoREM and ReAssuRE models.

Class of Change Traceability

Requirements

LoREM Support ReAssuRE Support

Environmental Change Target system separation Partial Yes

Faulty Assumption Forward tracing No Yes

New Technology Backward tracing Partial Yes

Consequential Change Backward tracing Partial Yes

Stakeholder Req. Change Indeterminate Indeterminate Indeterminate

Table 2: Support for Traceability Requirements of Identified Change Classes

In Table 2, the target system separation tracing requirement refers to the ability to

identify all the decisions taken for a target system, and the availability of the rationale

behind the decisions. The forward tracing requirement refers to the ability to identify all

the decisions affected by an entity, and the backward tracing requirement to the ability to

identify decisions that affect an entity. The scope of a stakeholder requirement change is

unpredictable, thus the tracing requirements for a specific change are also indeterminate.

The next section examines the degree to which each set of traceability requirements is

met by the LoREM and ReAssuRE models, returning to the Adaptive Image Viewer DAS

for illustration.

5.1.2 Tracing Examples

This section provides guided examples showing how ReAssuRE models meet the

tracing requirements identified in the previous section. The examples all centre around

the Adaptive Image Viewer first discussed in Section 4.2, and take the form of potential

specification changes: one for each class of change identified in Section 5.1.1.

Page 77

5.1.2 Tracing Examples

Environmental Change

As understanding of a DAS's operating environment improves, the decisions reached

and balances struck for a target system may need to be re-visited. Furthermore, even if the

analyst's understanding of the operating environment is perfect, the environment itself

may change over time, triggering the same need to re-visit a target system's specification.

In Section 4.2, the Adaptive Image Viewer's two target systems were identified as: S1

(Normal) and S2 (High Latency). The DAS's specification calls for a file cache to be used in

the S2 target system to improve perceived performance, but not for S1 to conserve

memory. An example of an environmental change would be the emergence of a new

domain: D3 - characterised by both poor network performance and low amount of

available memory.

The emergence of this new domain would likely be identified by a failure during

adaptation from S1 to S2, when the DAS finds insufficient memory to enable the cache,

prompting the need to specify a third target system: S3. Given that the high-level goals and

softgoals of the S3 target system are the same as the most similar existing target system, S2,

a significant amount of S2's model can be re-used for the new target system. The only

model elements that should not be transferred are the claims, which are domain-specific.

Figure 13 shows the newly created model.

Page 78

5.1.2 Tracing Examples

Now that a base model exists for S3, the analyst can identify decisions that need to be

made for the new target system. This identification is achieved by locating all goal

elements on the model that have two or more tasks attached to it via means-end links. The

only such goal in Figure 13 is the “Load Data” goal. The decision in this instance is simple:

there is not enough memory to enable the cache, and so the “Don't use Cache” task is to be

selected. It would be possible to model this decision by removing the “Use Cache” task

from the model, but to do so would hinder future tracing by removing the record of

available alternatives for the decision. Instead, the decision is to be modelled by the

inclusion of a claim.

Page 79

Figure 13:Transferred Elements of Adaptive Image Viewer's S3 Model

5.1.2 Tracing Examples

The rationale behind the decision not to use the cache in S3 is that there is not enough

memory to do so. Thus, the “Use Cache” task's “hurt” contribution to the “Minimise

Memory Usage” softgoal can be lent extra credence with a claim. The brief rationale in the

claim: “Insufficient Memory” serves to assist later users of the model in understanding

why the decision was reached, as well as serving as a bottom-level claim for a Claim

Refinement Model. Figure 14 shows the final SR model for the S3 target system.

Figure 14 shows that the decision not to use a cache in D3 was taken, and that the

rationale behind the decision was that there was “insufficient memory”. Although in this

instance, even this brief rationale would likely be sufficient for tracing purposes, more

complex rationales would be supported using a Claim Refinement Model. For illustrative

purposes, the Claim Refinement Model supporting the “insufficient memory” claim is

shown in Figure 15.

Page 80

Figure 14: Final S3 Level One Model for Adaptive Image Viewer

5.1.2 Tracing Examples

Figure 15 shows that the “Insufficient Memory” claim is based upon two assumptions:

that the cache uses 32M of memory when active, and that there is less than 32M of

memory available in D3. The former is an assumption about a decision alternative, the

latter an assumption about the environment. Although the utility of claim refinement

models to promote traceability is diminished for simple rationales, questions such as "Why

does the adaptive image viewer not use a cache under these circumstances?" that may be

asked later in the specification or design phases, or indeed after deployment are better

answered with this information available.

Broken Assumption

It could be argued that most types of specification changes are, in fact, underpinned by

a perhaps implicit assumption that has been broken. However, in the context of this

thesis, a broken assumption refers to one of the assumptions made explicitly during the RE

process, modelled as a claim in a ReAssuRE model. Returning to the adaptive image

viewer's S2 target system, the SR model for which was first depicted in Figure 4 on page

54, we can see that the S2 target system is specified as using the cache, because the extra

perceived speed it brings was deemed necessary in D2.

The S2 Claim Refinement Model (Figure 6 on page 57) shows that this rationale is

based on two assumptions: that there will be significant latency in D2, and that using the

Page 81

Figure 15: Claim Refinement Model for Adaptive Image Viewer's S3 Target System

5.1.2 Tracing Examples

cache will improve the perceived speed of the application in loading images.

Unfortunately, this second assumption only holds if the cache is able to predict the images

the user is likely to request next: e.g. if they are being accessed sequentially. If, in normal

use, images are not accessed in a predictable sequence, the “Caching will Improve

Perceived Speed” assumption will no longer hold.

ReAssuRE models support the tracing of the impact of a broken assumption by

propagating a “broken” label through a Claim Refinement Model, and if necessary onto

the SR model of a target system. The rules of label propagation throughout a Claim

Refinement Model are as follows:

• When a claim is derived from a single claim, the derived claim inherits the label of the

upper-level claim; the upper-level claim makes or breaks the derived claim.

• When a claim is derived from two or more AND-ed claims, it inherits the label of any of

its supporting claims thus, should an upper-level claim be broken, so too is the derived

claim.

• When a claim is derived form two or more OR-ed claims, a label is only propagated if

all of the supporting claims possess the label.

Applying these rules to propagate a “broken” label throughout the claim refinement

model in Figure 6 yields Figure 16.

Page 82

5.1.2 Tracing Examples

Figure 16 shows that if the “Caching will Improve Perceived Speed” claim is broken, so

too is the bottom level claim: “Extra Speed Needed in S2”. This bottom-level claim is then

broken on the S2 target system's SR model, where the decisions affected by the claim can

be traced. The updated SR model for the S2 target system is depicted in Figure 17.

Page 83

Figure 16: “Broken” Label Propagation in Claim Refinement Model

Figure 17: Adaptive Image Viewer's S2 Target System with Broken Assumption

5.1.2 Tracing Examples

As Figure 17 shows, the claim previously supporting the decision to use the file cache

in S2 has been broken, and thus the contributions of the tasks requiring the use of the

cache or otherwise are deadlocked once more. However, we can use the newly uncovered

information: that the cache is ineffective in S2 to break the deadlock by adding a new

claim: “Cache ineffective in S2”. Figure 18 shows the SR model for the S2 target system

with the new claim.

Figure 18 depicts the updated model with the faulty assumption's claim removed, and

the new knowledge: that the cache does not, in fact, improve perceived speed in S2 added.

If the newly-added claim (or rather, the rationale it eludes to) was complex, then it may

be necessary to produce a new Claim Refinement Model showing the underlying

assumptions. In this case, however, the rationale is simple and explicit: thus none is

necessary.

Page 84

Figure 18: Adaptive Image Viewer's S2 Target System with New Claim

5.1.2 Tracing Examples

New Technology

A new technology will typically manifest itself as a new alternative to a decision, or a

new decision will have to be taken because previously only one alternative was

considered. For the adaptive image viewer, the example for broken assumptions can be

extended to illustrate this type of scenario. If it was discovered that the image cache

turned out to be ineffective, perhaps because the image viewer was used to view images

non-sequentially, the idea of creating a new type of cache may be floated.

This new type of cache would use basic learning behaviour to remember the sequences

that images are accessed in, so that if the same pattern of images is accessed again, the

cache can pre-load image data and improve perceived speed. This new type of cache

would need slightly more memory than the original cache to provide this learning feature

as well as cache image data, but would opt not to cache image data when no prediction

was available. Thus, the overall increase to memory consumption using the learning cache

can be considered insignificant. Figure 19 shows an updated SR model for the S2 target

system (with elements carried over from the previous broken assumption example) with

the new type of cache added as a decision alternative.

Page 85

5.1.2 Tracing Examples

As Figure 19 depicts, using the original cache is still inadvisable because it has proven

ineffective. However, given the use of an exclusive claim to remove the original cache

from consideration, it is still viable to use either the new learning cache, or no cache at all.

It is decided that, given the learning cache's relatively slim memory requirements in

scenarios in which it will not be effective, that it is to be used in S2. Using the learning

cache in S2 will improve perceived speed at the expense of memory consumption where

possible, but will use a small amount of memory for no benefit in less favourable scenarios.

This rationale is somewhat more complex than that discussed previously, and the Claim

Refinement Model capturing it is depicted in Figure 21.

Page 86

Figure 19: Adaptive Image Viewer's S2 Target System with New Cache Available

5.1.2 Tracing Examples

The original cache failed because images were not normally accessed sequentially. this

fact is modelled as a claim, which provides sufficient justification to support the “Cache

Ineffective in S2” claim introduced in the previous example. The new cache's expected

behaviour is asserted by the “Learning Cache Supports Non-sequential Access” claim,

which conjoined with the previous claim supports the “Learning Cache Sometimes

Improves Speed”. This, in turn, is combined with the previously seen “Network Latency is

High in S2” assertion to offer a bottom-level “Try to Improve Speed Where Possible”

Claim.

The original, and now invalidated, rationale persists in Figure 20. This is entirely

optional, and offers the benefit of allowing previously made assumptions to be identified,

even if later discarded. The ability to trace previous decision outcomes is not central to the

ReAssuRE process, but has some interesting uses, as discussed further in Section 6.2. Those

who chose to remove invalidated decision rationale will enjoy less complex models, which

is, of course, appealing.

Page 87

Figure 20: Claim Refinement Model with Rationale for Learning Cache in S2

5.1.2 Tracing Examples

Although the single additional bottom-level claim in Figure 20 would be sufficient to

break the deadlock on the SR model in Figure 19, the rationale presented by Figure 20

makes no reference to the part of the rationale dealing with the acceptable memory cost in

situations where the cache doesn't improve speed. This rationale is represented by the

“Learning Cache uses Little Memory when Learning” claim, which along with the “Cache

Ineffective in S2” claim, is responsible for upholding the bottom-level “Memory Cost

Acceptable” claim, as depicted in Figure 21.

The three valid bottom-level claims depicted in Figure 21 can be added to the S2 target

system's SR model to justify the selection of the learning cache to satisfy the “Load Image

Data” goal, as depicted in Figure 22.

Page 88

Figure 21: Complete Claim Refinement Model Supporting Learning Cache's Use

5.1.2 Tracing Examples

Complexity in i* models is a recognised problem [104] [105] [106], and adding three

claims to a model where a single claim would be sufficient to break the deadlock on the

model and represent a decision may seem frivolous. There is thus a tension between

accurately recording the rationale behind a decision, and minimising the complexity (or

maximising the comprehensibility) of the models. This problem is discussed further in 6.2,

but for now Figure 23 and Figure 24 depict a less precise rationale for the decision

captured in a single claim on the SR model, and the corresponding Claim Refinement

Model respectively.

Page 89

Figure 22: Adaptive Image Viewer's S2 Target System with Learning Cache Rationale

5.1.2 Tracing Examples

Page 90

Figure 24: Simplified Claim Refinement Model Supporting Learning Cache's Use

Figure 23: Simplified SR Model Showing Learning Cache's Selection in S2

5.1.2 Tracing Examples

Consequential Change

A consequential change is one brought about as a result, either directly or indirectly,

of another change. This type of change is most commonly encountered when dealing with

a requirement with an overall budget such as a maximum weight or maximum power

consumption. For the adaptive image viewer, no such budgeted requirement exists, so for

the purposes of this example, we shall introduce the classic budgeted requirement: cost.

The decision in the previous example to create a learning cache better suited to the D2

domain comes at a cost in terms of development time and, thus, cash. If the project to

develop the adaptive image viewer had an overall budget, it may be that this decision

takes the whole system over budget. Figure 25 shows the S2 target system's SR model with

this example budgeted requirement added.

Page 91

Figure 25: Adaptive Image Viewer's S2 Target System with Cost Contributions

5.1.2 Tracing Examples

Merely adding the “Minimise Cost” softgoal and the necessary contribution links has

the effect of visually tilting the decision process in favour of not using a cache at all, given

that both of the other options for the “Load Image Data” goal have two negative

contributions to one positive. However, the need to maximise perceived speed is valued

highly, and cost has been largely ignored in the decision. This could be represented by a

“Cost Acceptable” claim, but as this is not the focus of the example, we shall instead turn

to the issue of handling the fact that the system is now over budget.

Dealing with a consequential change involves tracing across target systems all of the

decisions taken that affect the budget under consideration. In the adaptive image viewer,

there is only a single decision taken in each target system: the decision whether or not to

use a cache (or now the new learning cache). Examining each of these decisions in turn to

see if a change can be made to bring the system back down to budget may yield new

decision outcomes, with appropriate rationale. For the adaptive image viewer, however,

the decisions are unlikely to be reversed and thus the only option available is to re-

negotiate the budget.

In some situations, after tracing the decisions that affect a budget it would be possible

to identify likely candidate decisions for adjustment using softgoal priorities. However,

correctly setting priorities is no easy task, and to do so risks offering the illusion of

quantitative precision for what are in reality imprecise qualitative expressions of priority.

Furthermore, decisions often to not adhere strictly to a set of priorities, and attempting to

impose some priority metric on the affected softgoals will give the appearance of

contradictory and inconsistent decision outcomes. Some seemingly contradictory decisions

cannot even be represented by assigning softgoal priorities, as discussed previously in

Section 4.2.3.

Page 92

5.1.2 Tracing Examples

Stakeholder Requirements Change

A stakeholder requirements change may occur at any time during the specification,

design, or implementation of the system, or indeed after deployment with changes

required during maintenance. The scope and impact of this type of change is impossible to

predict. A change may range from a simple re-prioritisation of previously identified

requirements; spurring a need to revisit the trade-offs made involving them, or a newly

introduced goal for the system to achieve. As an example, the former case is discussed

below.

The core of the adaptive image viewer's need for adaptation is that the relative

priorities of the “Maximise Perceived Speed” and “Minimise Memory Usage” softgoals vary

in differing environmental conditions, and that no one balance can be reached that is

acceptable across all the sets of environmental conditions in which the system is expected

to operate. Thus, a shift in the relative priorities of these requirements makes a significant

change to the desired behaviour of the system overall. To illustrate this, the priorities of

the two softgoals in the S1 target system shall be adjusted.

It is discovered that, when operating in low network latency conditions (S1), the other

applications running on the adaptive image viewer's hardware require far less memory

than previously anticipated. Thus, the need to conserve memory in S1 is diminished.

Unfortunately, this is insufficient to allow the use of the previously discussed learning

cache in S1: it simply uses too much memory. In S2, the image viewer has been adjudged to

have a greater need for memory than the other applications, and thus the cost in terms of

memory of the learning cache remains acceptable. Returning to S1, Figure 26 shows the

previously reached specification decisions.

Page 93

5.1.2 Tracing Examples

The previous rationale justifying the decision not to use cache is identified as being

that the speed increase is unnecessary in S1 (and thus the cost in terms of memory usage is

unjustified). When the learning cache is introduced into the S1 target system model, the

relative affordability of each of the cache's memory usage can be captured with claims as

shown on Figure 27. The associated Claim Refinement Model, in this case, would feature

claims of the available memory, and the expected consumption of each type of cache to

support the decision.

Page 94

Figure 26: ReAssuRE Model of Adaptive Image Viewer's S1 Target System

5.1.2 Tracing Examples

Of course, this example is highly contrived, its presence shows merely that some

stakeholder requirements changes may be more easily handled with the availability of

decision rationale, which was eluded to by the “indeterminate” in Table 2 on page 77. The

potential scope of stakeholder requirement changes varies significantly, and thus it is

infeasible for a model to offer supporting traceability information to cover all scenarios.

To conclude, this section has presented and discussed examples of each of the

previously identified classes of change. It has demonstrated how ReAssuRE models, with

their additional rationale recorded for traceability can be used to better support the

process of change for DAS specifications, which this thesis argues are likely to be

frequently encountered.

Page 95

Figure 27: Adaptive Image Viewer's S1 Target System after Requirement Change

5.2 Policy Derivation

5.2 Policy Derivation

The research objectives presented in Section 1.3 included answering the following

question:

To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

If the answer to this question is “entirely”, one way to prove so is to demonstrate an

ability to derive the policies controlling the DAS's adaptive behaviour from the models

codifying the environmental analysis and configuration decisions, such as ReAssuRE

models. Adaptation policies state the trigger condition for an adaptation, as well as the

reconfigurations performed to achieve it. Thus, from a policy-derivation perspective, there

are two key pieces of information to ascertain from the models:

1. the differences in decision outcomes between target systems and

2. the trigger condition that prompts the transition between target systems

The first piece of information can be obtained by comparing the Level-One SR models

of the appropriate target systems. The Level-One SR models for each of the adaptive image

viewer's two target systems, first presented in Figure 26 and Figure 4, on pages 94 and 54,

respectively, are depicted side-by-side in Figure 28.

Page 96

5.2 Policy Derivation

By comparing the two Level-One SR models in Figure 28, it is possible to infer the

component substitutions involved in transitioning from S1 to S2 and vice versa. The precise

component (or class) names associated with each selectable task can be placed in a lookup

table when generating policies. As Figure 28 shows, the only difference between the two

target systems is the means by which the “Load Data” goal is satisfied. In the D1 domain, S1

satisfies the goal with the task: “Don't use Cache”, and in D2, S2 opts for “Use Cache”. Thus,

to transition from S1 to S2, the adaptation policy must specify that the component

associated with “Don't Use Cache” is disabled, and that associated with “Use Cache” is

enabled. For the reverse transition, the inverse is true.

The second piece of information, the condition which triggers the adaptation, is

ascertained by examining the Level-Two model associated with the transition. In the

ReAssuRE process, a Level-Two model is produced for each valid transition, so the

presence or absence of a model for a transition speaks to the need to produce policy rules

to specify it.

The Level-Two model for the S1 to S2 transition was depicted in Figure 11 on page 68

(Section 4.3). As discussed in Section 4.3, ReAssuRE Level-Two models detail three

different elements of a DAS's adaptive infrastructure: the monitoring mechanism, which is

responsible for monitoring environmental parameters, aggregating the data and providing

Page 97

Figure 28: ReAssuRE Models of Adaptive Image Viewer's Two Target Systems

5.2 Policy Derivation

it to the decision-making mechanism. The decision-making mechanism uses the

monitoring data to determine when adaptation is necessary, using an adaptation trigger to

signal the adaptation mechanism, which effects the adaptation. Clearly, it is the adaptation

trigger which is of interest here, and it can be identified in Figure 11 as the “Fire

HIGH_LATENCY Event” task. Thus, the two pieces of information highlighted as

required at the start of the section, for the S1-S2 transition, are:

1. “Load Data” being satisfied by “Use Cache” instead of “Don't Use Cache” and

2. the adaptation trigger: the firing of the “HIGH_LATENCY” event

These two pieces of information are sufficient to write an Event-Condition-Action

(ECA) rule for the reconfiguration. Figure 11 shows the ECA rule for the S1-S2 transition

as a snippet of XML, as used by the GridKit adaptive middleware [39] to specify adaptive

behaviour.

The snippet of adaptation policy depicted in Figure 29 specifies the so-called

configuration framework [39] used by the reconfiguration, which in this case is the

Page 98

<ReconfigurationRule>
<FrameWork>Cache</FrameWork>

<Events>
<Event><Type>HIGH_LATENCY</Type><Value/></Event>

</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Cache</Name>

</Reconfiguration>
</ReconfigurationRule>

Figure 29: Snippet of Adaptive Image Viewer's Adaptation Policy

5.2 Policy Derivation

“Cache” framework. A configuration framework abstracts over the different possible

combinations of components in use by the DAS (or a subsystem) at a particular time, and

presents a common, stable, interface to the business logic developers.

The “Events” section of the policy specifies the event(s) that will trigger the

adaptation. Events may trigger adaptation merely by being fired (as in this case), or may

only do so if a specific value is associated with the event. The “Reconfigurations” section

of the policy specifies which reconfigurations must be performed as part of the adaptation.

In this case, the only reconfiguration performed enables the file cache.

The process of policy derivation is amenable to automation, which can potentially

reduce the time taken writing adaptation policies, which is particularly advantageous if a

DAS's specification is liable to change over time, as argued in Section 5.1.1. Automation

also reduces the scope for error during the derivation process, which increases confidence

that the final adaptive behaviour of a DAS corresponds to the outcomes of decisions taken

during early-phase RE.

High-level, descriptive pseudocode for the algorithm used to perform the policy

derivation is included as Appendix D – Pseudocode for Policy Generation. However, the

algorithm as implemented for the tool support described later in this section, makes two

important assumptions about the supplied Level-Two model:

1. The Level-Two model has a “Fire Event when Environment Changes” task.

2. The Trigger task is connected to the above task, and the task label begins with

the word “Fire”

Thus, the tool support presented in this subsection for policy generation is dependent

on the supplied Level-Two model conforming to a similar template as that illustrated in

Figure 11. Although all the Level-Two models encountered during the preparation of this

thesis have been near identical, and have met the two requirements above, it may be that

Page 99

5.2 Policy Derivation

some DAS models will not confirm to this template. In such cases, a new trigger-finding

algorithm will need to be found to allow the policy derivation method to function.

To demonstrate automated policy derivation, this thesis presents a command-line tool

capable of producing adaptation policies compatible with the GridKit adaptive

infrastructure [39] from a collection of ReAssuRE models using the method discussed

above. The tool operates on saved ReAssuRE models produced using the OME3 i*

modelling tool [84], and takes command-line arguments as specified in Table 3 below:

Command Line Parameter Purpose

-l1 Comma-separated list of Level-One models

-l2 Comma-separated list of Level-Two models

-f Configuration framework name

-t Class name lookup table

-o Output file name for generated policy

Table 3: Command-Line Arguments of Policy Generation Tool

The “l1” and “l2” parameters specify the file names of the ReAssuRE models from

which the adaptation policy is to be generated. The “f” parameter specifies the name of the

configuration framework used by the policy. The “t” parameter specifies a text file

containing class names and associated model element names, which allows human-

readable element names to be used in the ReAssuRE models and specific class names to be

used in the adaptation policy. Finally, the “o” parameter specifies the file name to which

the generated policy should be written.

For illustrative purposes, a screen-shot of the tool performing the policy generation is

included below as Figure 30. The complete adaptation policy for the Adaptive Image

Viewer, as generated by the tool is included in full as Appendix A – Image Viewer's

Adaptation Policy.

Page 100

5.2 Policy Derivation

Although an ability to derive policies for a specific middleware implementation from

ReAssuRE models is sufficient to demonstrate a clear link between the decisions codified

in the models and a DAS's eventual adaptive behaviour, the utility of the tool is restricted

to any DAS using that specific middleware as an adaptive infrastructure. To combat this

restriction, the tool has a second mode of operation, which instead of generating policies

for a specific adaptive middleware; outputs the derived adaptive behaviour to a domain

specific language designed specifically for this purpose.

The Genie Domain Specific Language (DSL) [107] allows adaptive behaviour to be

specified and expressed independently of adaptive infrastructure, and there is also a visual

modelling tool based on the MetaEdit+ modelling meta-tool [108] available to allow

adaptive behaviour expressed in the Genie DSL to be manipulated visually. Adaptive

behaviour expressed in the Genie DSL can be exported from the tool in the format

required by one of several adaptive infrastructures, as detailed in [107].

Figure 31 and Figure 32 depict the tool transforming adaptive behaviour from

ReAssuRE models to the Genie DSL, and the resultant model exported from the Genie

visualisation tool, respectively.

Page 101

Figure 30: Screen-Shot of Policy Generation Tool

5.2 Policy Derivation

Page 102

Figure 31: Screen-Shot of the Genie DSL Derivation Tool

5.2 Policy Derivation

The Genie model depicted in Figure 32 takes the form of a feature model [109], as

frequently encountered in software product line circles. Feature models illustrate the

combinations of features that different related software products within a family (a

product line) provide. By way of an analogy, a DAS can be considered as a product line,

with each individual target system considered a product [110]. Each product (target

system) select different combinations of features (decision outcomes, or individual

components) from those available.

The triangles in Figure 32 marked with “VP” represent a variation point, where a

choice is made to specify (or omit) a feature in an individual product within the product

Page 103

Figure 32: Genie model of Adaptive Image Viewer's Adaptive Behaviour

5.2 Policy Derivation

line. The rectangles marked with a “V” are variants, representing a feature within the

product line. The squares at the bottom of Figure 32 represent individual products, and

represent DAS target systems in GENIE models. The DAS in Figure 32 is itself a variation

point, capable of using the S1 or S2 feature (target system). The other variation point, “Load

Data”, corresponds to the identically named task in the two Level-One SR models in

Figure 28, and can be specified using either of the linked variants: “No Cache” or “Cache”.

To conclude, this section has demonstrated it possible to derive a DAS's adaptation

policies from ReAssuRE Level-One and Two models directly and automatically. The

environmental analysis and configuration decisions codified in the ReAssuRE models are

transformed into a DAS's adaptive behaviour, which directly answers one of the research

questions posed in Section 1.3:

To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

As such, it is reasonable to answer the research question: “entirely”. The automation of

the method, as demonstrated by the tool support introduced, is also sufficient to answer a

second research question posed in Section 1.3:

Given that both the information from the environmental analysis and the

configuration decisions are subject to change, how can the workload of deriving a

DAS's adaptive behaviour be reduced?

The workload involved in deriving a DAS's adaptive behaviour manually is significant,

and the process potentially error-prone. If, as argued in Section 5.1.1, a DAS's specification

is liable to change, the cost associated with re-deriving adaptive behaviour potentially

multiple times in response to changes could become prohibitive. The automation

presented in this section significantly reduces the time taken to re-derive adaptive

behaviour, and eliminates the possibility of human error from the derivation process. This

policy derivation work has also been reported in preparation for this thesis [111].

Page 104

5.3 Requirements Validation

5.3 Requirements Validation

Specifying a system capable of adapting its behaviour to suit a volatile environment is a

difficult task, and any eventual specification should be subject to significant validation

effort to ensure that the behaviour specified for given sets of environmental conditions is

appropriate. Claims in ReAssuRE models can be used to highlight areas of uncertainty in

the reasoning behind a DAS's specification, and by developing validation scenarios seeking

to explore the likelihood and consequences of deficiencies. This section introduces a

method by which key validation scenarios can be identified using ReAssuRE models,

supporting DAS requirements validation, as previously reported by Welsh & Sawyer [88].

Claims in ReAssuRE models can vary in the degree of certainty held in them by the

analyst. Some claims are axiomatic, others little more than assumptions that were needed

to reach a decision. If a claim is wrong, the performance of the DAS may be unsatisfactory,

the DAS may exhibit harmful emergent behaviour, or the system may fail completely. As

such, claims should be validated where possible to ensure their correctness. Unfortunately,

the complex and uncertain nature of the environments DASs are developed for, along

with the likelihood of analysts working with incomplete knowledge, means that some

claims will prove difficult if not impossible to validate with complete assurance during the

RE process. In these cases, it is beneficial to examine the behaviour of the DAS if a claim is

proven false.

ReAssuRE models allow the analyst to examine the potential impact of a claim's falsity,

by tracing the impact throughout models. In cases where a bottom-level claim (that is, a

claim underpinning a decision on a Level-One SR model) is affected by a claim's falsity,

some action may be necessary to better understand a DAS's behaviour if such a scenario

manifested itself. This thesis uses the term validation scenario for such activity, but does

not prescribe the form of a validation scenario. Most obviously, validation scenarios could

take the form of test cases executed to verify the DAS's behaviour in the circumstances

covered by the validation scenario complies with set criteria. However, in some

circumstances simulation, modelling or static reasoning may be more appropriate.

Page 105

5.3 Requirements Validation

In keeping with the qualitative nature of the reasoning supported by i*, the ReAssuRE

process supports reasoning with the degree of uncertainty about a claim in a simple

qualitative manner. A claim that is axiomatic is afforded the label unbreakable, whilst a

claim in which a low degree of confidence is held is termed uncertain. These two labels

are two extremes of the confidence scale, a claim that lies between the two extremities is

termed qualified. In borderline cases in which it is difficult to classify claims as uncertain

or qualified, the consequences of claim falsification may be taken into account, with

borderline claims classified as uncertain if the consequences of the claim not holding

appear serious.

Returning to the Claim Refinement Model for the S2 target system, first seen in Figure

6 on page 57, allows the claims to be classified and assigned confidence labels. Assigning

confidence labels to all but the bottom-level claim on Figure 6 and propagating them

throughout the model allows us to establish the degree of confidence held in the bottom-

level claim. The “Latency is High in S2” claim is axiomatic and thus should be labelled

unbreakable: high latency is the defining feature of S2. The “caching will improve

perceived speed” claim, on the other hand, is uncertain: as we saw in Section 5.1.2, images

being accessed non-sequentially could easily render the claim invalid.

To propagate the uncertainty labels throughout the model, rules similar to those used

in Section 5.1.2 on page 82 to propagate “broken” labels throughout a claim refinement

model are used, these are:

• If a claim is derived from a single claim, then the derived claim inherits the label of the

upper-level claim.

• If a claim is derived from two or more AND-ed claims, then it inherits the least certain

label of its supporting claims.

• If a claim is derived form two or more OR-ed claims, then it inherits the most certain

label of its supporting claims.

Page 106

5.3 Requirements Validation

A bottom-level claim that, once label propagation has taken place, is classed as

unbreakable has little uncertainty underpinning it. A bottom-level claim classed as

uncertain or qualified has a higher degree of uncertainty, and should be the target of

validation work, especially so in the case of an uncertain bottom-level claim. Applying the

rules above to propagate uncertainty labels throughout Figure 6 yields Figure 33.

The bottom-level claim in Figure 33 has been classified as uncertain. As such, there is a

need to explore how the DAS would behave in circumstances where the claim doesn't

hold. Developing a validation scenario where the behaviour of the DAS can be simulated,

examined or tested becomes a matter of identifying a set of environmental conditions in

which a given combination of bottom-level claims hold (or do not hold). For the adaptive

image viewer, such a validation scenario would likely reveal that in such circumstances

the adaptive image viewer uses memory to facilitate caching whilst deriving no benefit in

terms of perceived speed from doing so.

If the outcome of a validation scenario is acceptable, then there is likely no need to

refine the DAS's requirements specification for the target system under study, and some

uncertainty has been mitigated. If the outcome is more problematic, this signifies a need

to revisit the specification of the target system under study, and the assumptions the

specification is based upon.

Page 107

Figure 33: Uncertainty Propagation in S2 Claim Refinement Model

5.3 Requirements Validation

For target systems with greater numbers of bottom-level claims, it becomes necessary

to consider a validation scenarios for each possible combination of falsified and held

bottom-level claims, which can amount to a significant validation burden as the number

of required validation scenarios (T) increases with the number of bottom-level claims (n)

with the formula T=2n-1. One is subtracted because the combination in which all claims

hold is the envisaged domain.

When dealing with a large number of bottom-level claims, there is clearly a benefit in

targeting validation resources at uncertain claims (and combinations including uncertain

claims), as scenarios involving them are more likely to occur. The explosive increase in

required validation scenarios as the number of bottom-level claims rises, along with the

fact that only a sub-set of a model's bottom-level claims will be considered uncertain

means that this targeting can yield a significant reduction in the number of validation

scenarios required, as demonstrated in Section 7.5.

The act of deriving validation scenarios from combinations of held and falsified

bottom-level claims rather than from combinations of underlying claims greatly reduces

the number of validation scenarios that need to be constructed by grouping together all

combinations of broken underlying claims that have a specific effect, i.e. breaking a given

bottom-level claim,. Furthermore. The procedure allows scenarios rendered irrelevant by

axiomatic claims to be removed from consideration.

To conclude, this section has introduced a method of classifying claims based on the

degree of certainty held in them by the analyst. It has also demonstrated how uncertainty

labels propagate throughout claim refinement models, and how validation scenarios may

be derived from a particular combination of bottom-level claims holding or otherwise to

aid in DAS requirements validation. The work presented in this section has been

published in full [88].

Page 108

5.4 Chapter Conclusion

5.4 Chapter Conclusion

Although a DAS possesses a limited ability to adjust its behaviour at run time in

response to changes in the operating environment, the complexity of the domains for

which DASs prove most useful, coupled with the likely imperfect understanding of both

the environment and candidate components during early-phase RE means that the

specification for a DAS is liable to change.

ReAssuRE models support change by recording additional tracing information in the

form of claims, which capture the rationale behind decisions and the assumptions on

which the rationale is based. This information eases the process of change in common

scenarios, improving the efficiency of the change process.

A DAS's adaptive behaviour may be derived from its ReAssuRE models, and the

derivation method can be automated. A tool that transforms ReAssuRE models into either

adaptation policies directly, or to a DSL designed to represent adaptive behaviour has been

introduced, which can save a significant amount of time during the derivation process, as

well as reduce error.

Thus, the bulk of the time spent in the change process is spent updating ReAssuRE

models rather than re-specifying adaptive behaviour. The improved traceability support of

ReAssuRE models minimises the time taken in performing these updates.

The chapter has also answered three of this thesis's research questions, which were

presented in Section 1.3:

Can the information from the environmental analysis and configuration decisions

be codified in models, and is it useful to do so?

Information from the environmental analysis and configuration decisions taken during

early-phase RE can be codified in models, with ReAssuRE models containing more of this

information than previously possible. The utility of doing so is demonstrated by the

enhanced traceability support discussed in Section 5.1.2.

Page 109

5.4 Chapter Conclusion

To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

A DAS's adaptive behaviour is entirely a derivation of the environmental analysis and

configuration decisions taken during early-phase RE, as demonstrated by the ability to

both perform and automate this derivation from the ReAssuRE models, which codify the

results of environmental analysis and configuration decisions.

Given that both the information from the environmental analysis and the

configuration decisions are subject to change, how can the workload of deriving a

DAS's adaptive behaviour be reduced?

The workload associated with deriving a DAS's adaptive behaviour is significantly

reduced by automating the derivation process. The workload associated with re-deriving

adaptive behaviour in response to a specification change is reduced by the enhanced

traceability support of ReAssuRE models which helps trace the impact of change in a

DAS's specification, as well as by the automated derivation tool.

The need to validate requirements for a DAS is particularly acute given the relative

uncertainty of the environments in which they operate. The chapter has demonstrated

how claims in ReAssuRE models act as markers for uncertainty about the environment or

expected behaviour, and demonstrated how reasoning with a simple scheme of

uncertainty labels allows assumptions to be grouped by the effect of their falsification, and

for the effects themselves to be explored using validation scenarios.

The next chapter builds upon the work discussed in this, focussing on how ReAssuRE

models can be used at run time, by a DAS itself.

Page 110

6 ReAssuRE at Run Time

6 ReAssuRE at Run Time

The previous chapter discussed uses of ReAssuRE models at design time,

demonstrating their improved traceability support and an ability to derive adaptation

policies from the models directly. This chapter focusses on using the same models at run

time to guide the DAS's adaptation.

For some time, systems have been able to monitor their performance, and the degree

to which key requirements are satisfied [93] [95]. This monitoring data would typically be

used by developers for tuning and maintenance purposes. The emergence of adaptive

infrastructures allowing systems to adjust their behaviour at run time in response to

monitoring data has bred research interest in systems that use requirements models to

help interpret monitoring data, with the adaptive infrastructure providing a means to

effect behavioural change to act upon it. This emerging practice is referred to as

models@run.time [112]. This chapter demonstrates the use of ReAssuRE models at run

time to allow a DAS to adjust the configuration of a target system in circumstances where

monitoring data indicates the current configuration is sub-optimal.

The tool support for adaptive policy generation discussed in Section 5.2 operates by

loading, parsing and reasoning with ReAssuRE models programatically. The same

techniques can be leveraged by a DAS to reason with ReAssuRE models at run time.

The ability to reason-with ReAssuRE models at run time, coupled with an ability to

modify the models in response to monitored environmental conditions offers the

possibility of a DAS performing some of the specification changes demonstrated in 5.1.2

autonomously. The chapter introduces a class of DAS called a Model-driven Dynamically

Adaptive System, abbreviated to m-DAS. This class of DAS uses design-time models to

guide run-time adaptation. Although the term m-DAS covers any DAS that uses models to

guide adaptation, a m-DAS using ReAssuRE models and requirements monitoring

techniques [30] serves as an example of the class of system, allowing this thesis to explore

the implications of constructing systems with a greater degree of autonomy than before.

Page 111

6 ReAssuRE at Run Time

The chapter discusses the run-time representation of ReAssuRE models, the

environmental monitoring that allows the models to be modified in memory, and

demonstrates how a m-DAS may adjust its adaptive behaviour in response to these

modifications. The chapter also examines the potential for damaging emergent behaviour,

and demonstrates how a variant of the validation scenario derivation technique discussed

in Section 5.3 can offer testing scenarios aiming to uncover potential emergent behaviour.

6.1 Run-Time Representation of ReAssuRE models

When implementing tool support for the policy derivation method discussed in

Section 5.2, it was necessary to develop code to load, parse and reason with ReAssuRE

models. As well as being necessary for tool support, this also offered the possibility of

allowing a DAS to reason with ReAssuRE models autonomously. This, combined with

monitoring techniques discussed in Section 6.2 could allow a m-DAS to derive a new,

unspecified configuration when operating outside its foreseen operational envelope.

Three types of ReAssuRE models can be parsed and loaded by a m-DAS at run time:

Level-One Strategic Rationale and Claim Refinement Models, along with Level-Two

models. Level-Two models are used solely when deriving new adaptation policies,

whereas Level-One SR and Claim Refinement Models are reasoned with to enable new

configurations to be devised and adopted.

An i* model can be thought of as an acyclic digraph, whose nodes are one of several

defined i* elements, and whose edges are one of several defined i* relationships. Meaning

is inferred by examining the types of elements connected together, and the type of

relationship connecting them. The OME3 i* modelling tool [84] produces i* models saved

in the “.tel” (short for telos) file format, which are essentially textual representations of

each of the elements and relationships in a model, along with a section on view-state,

which controls layout. To reason with models, the view-state information can safely be

discarded, and a logical representation of the model is constructed by instantiating objects

Page 112

6.1 Run-Time Representation of ReAssuRE models

representing each encountered i* element, linking them together where appropriate with

specified relationships. As such, an in-memory representation of an i* model is little more

than a standard digraph, with most of the complexity lying in the ability to reason with

the model.

Both policy derivation, as discussed in Section 5.2, and run-time reasoning focus on

identifying goals in Level-One ReAssuRE models that may be satisfied by two or more

tasks. These tasks are connected to the goal via a means-end link running from each task

to the goal. Internally, these goals with alternate satisfaction means are referred to as

“variation points”, and may be identified by traversing the digraph in memory to identify

the pattern described.

Level-Two models are analysed to identify the trigger condition that warrants a

transition between target systems. This is achieved by locating the decision-making

mechanism's task: “Fire event when environment changes”, present on all ReAssuRE

Level Two models. This task is decomposed into at least two sub-tasks, with one task

typically concerning the identification of an environmental change. The sub-task of

interest, is typically named “Fire X Event”, in which “X” is the name of the trigger event of

interest. Identifying the correct sub-task is a matter of finding the task with a name in this

format.

The most complex reasoning performed by a m-DAS at run time with ReAssuRE

models occurs in Claim Refinement Models. The label propagation method described in

Section 5.3 has been implemented for the “broken” label, which signifies that a claim no

longer holds. The use and propagation of this label is discussed in the next section.

6.2 Assumption Monitoring and “broken” Label Propagation

As discussed in Section 1.2, the complexity of domains for which DASs are conceived

coupled with uncertainty in both the nature of the domain and the behaviour of DAS

components or a DAS as a whole means that a DAS's specification is liable to change. One

Page 113

6.2 Assumption Monitoring and “broken” Label Propagation

class of change discussed in Section 5.1.1 was signalled by a broken assumption. This thesis

introduces the concept of assumption monitoring, which is analogous to the more

established activity of requirements monitoring [30]. In requirements monitoring, the

performance of the system with respect to satisfying key requirements is recorded and

monitored to allow stakeholders to better understand the system's performance and to

feed back into system refinements made during maintenance.

Except for some work focussing on automatically deriving monitors for quality

features (typically bound together in QoS concerns [95], the means of monitoring

requirements either directly or via some surrogate property are typically devised

manually, on a case-by-case basis. This thesis proposes that a similar approach is adopted

for monitoring the assumptions on which DAS specifications are based, by devising

monitors where feasible for assumptions recorded in ReAssuRE Claim Refinement

Models. It is not possible to monitor all assumptions directly. However, assumptions for

which monitors can be devised, and where monitoring data suggests the assumption no

longer holds, are broken, that is, have a “broken” label applied to them, and this status

may be propagated to child claims.

The ability of a m-DAS to reason with models of its own behaviour offers the

possibility of a m-DAS altering its configuration in response to changes in the models,

including changes as a result of an assumption no longer holding. In this respect, a m-DAS

devised to reason with ReAssuRE models, and which performs assumption monitoring,

has the potential to adjust its behaviour not only to foreseen changes in the environment,

but to circumstances outside those for which the m-DAS has had behaviour explicitly

specified.

The basis of this ability to adjust behaviour in response to assumptions found to no

longer hold is in the modification of ReAssuRE Level-One SR models in response to

bottom-level claims being broken on the associated Claim Refinement Model. In essence,

much of the work performed on uncovering a broken assumption in Section 5.1.2 is

automated. The final step discussed in Section 5.1.2: re-taking decisions that were reliant

(either directly or indirectly) on the broken assumption is particularly challenging.

Page 114

6.2 Assumption Monitoring and “broken” Label Propagation

Although it is possible via model analysis to identify assumptions reliant on a broken

assumption, inferring the decision outcome that would have been reached had the faulty

assumption not been made at design time is impossible in many cases. A particular

problem is that contributions on Level-One Strategic Rationale models may become

deadlocked.

To prevent deadlock, when devising a monitor for a particular assumption, the analyst

can specify one of three actions to be performed on the Level-One Strategic Rationale

model in the event of a bottom-level claim being broken either directly or by propagation.

More drastic action reduces the chance of deadlock but increases the chance of a needless

or unjustified change in configuration.

If a bottom-level claim on a Claim Refinement Model is broken, either demonstrably

by analysing monitoring data, or by label propagation after a supporting claim is broken,

then one of three actions can be performed on the corresponding Level-One SR model.

These are, in increasing order of strength with “3” as the strongest:

1. Remove the claim from the Level One model.

2. Invert the claim's contribution to the link to which it is attached.

3. Remove from consideration the task whose selection is supported by the

claim.

The risk of a stronger model modification causing the m-DAS to make an unjustified

configuration change means that weaker model modifications, which appear earlier in the

above list, are preferred whenever possible.

To reduce the chance of deadlock, a Level-One Strategic Rationale model and its

associated claim refinement model can be constructed using many claims, so that should a

single claim be broken and removed, the affected decisions rely on other claims.

Unfortunately, this type of construction requires several claims per decision on the Level-

Page 115

6.2 Assumption Monitoring and “broken” Label Propagation

One Strategic Rationale model, each needing supporting on the Claim Refinement Model.

This increases the complexity of the ReAssuRE models to such a degree as to be infeasible

in some cases, signifying the need for stronger modifications.

Taking stronger action on the Strategic Rationale model when invalidating a bottom-

level claim on its associated Claim Refinement Model can yield the same behaviour as a

more complex lattice of claims, whilst using significantly fewer claims. However, more

drastic modifications to the ReAssuRE models, especially when multiple such

modifications are made to a model, can potentially lead to a configuration being adopted

that is radically different from that envisaged by the m-DAS's creators. Such radically

altered configurations carry a significant risk of unpredictable and possibly damaging

emergent behaviour.

Clearly, the model modification used when invalidating a bottom-level claim in

response to a given monitor's data needs to be chosen carefully. Each type of model

modification is discussed, in turn and with an example, in the following paragraphs.

As mentioned previously, removing a broken bottom-level claim from a Level-One

model is preferable. Using several claims it is possible to offer more control of the

configuration the m-DAS falls back to should a claim fail. Using the “break” link in a

Claim Refinement Model also allows broken bottom-level claims to be placed on a level-

one Strategic Rationale model. An initially broken claim has no effect unless it is enabled

by monitoring or propagation, and can be used to control a m-DAS's configuration should

an assumption thought false at design time be found to hold at run time.

Returning to the adaptive image viewer example, review the Level-One Strategic

Rationale and Claim Refinement Models for the S2 target system. These were depicted in

Figure 4 on page 54, and Figure 6 on page 57, respectively.

Examining Figure 6, both supporting claims are amenable to monitoring, with

monitors potentially trivially devised for both. “Latency is High in S2” could be monitored

by measuring the latency encountered when loading files. “Caching will Improve

Perceived Speed” could be monitored by measuring the time taken to display images, and

Page 116

6.2 Assumption Monitoring and “broken” Label Propagation

comparing it to the underlying latency encountered (as monitored for the previous

assumption). However, given that high latency is a defining characteristic of the D2

domain, if latency should fall then the environment would be considered to be in the D1

domain, with the DAS adopting the S1 target system. As such, monitoring the “Latency is

High in S2” assumption is needless.

If the “Caching will Improve Perceived Speed” monitor were to yield data suggesting

the assumption doesn't hold (in Section 5.1.2, this was because images are being accessed

non-sequentially) then, just as in the manual example in Section 5.1.2, a “broken” label is

applied to the claim. Following the rules of propagation set out on page 106 in Section 5.3,

the “Extra Speed Needed in S2” claim's holding depends upon both supporting claims also

holding. Thus, the “broken” label propagates to the bottom-level: “Extra Speed Needed in

S2” claim, invalidating it also. The modified claim refinement model is depicted in Figure

34 below.

Because the Level-One SR model depicted in Figure 4 has no other claims, removing

the now invalidated bottom-level claim from the model will lead to the decision

governing the use of the cache becoming deadlocked. It is possible to prevent this

deadlock without using any stronger model modification by adding an alternate claim to

both the Strategic Rationale and the Claim Refinement Model. On the claim refinement

model, a “break” contribution can be used to force the alternate claim to start broken, and

Page 117

Figure 34: Modified S2 Claim Refinement Model

6.2 Assumption Monitoring and “broken” Label Propagation

only exert influence on the decision governing cache use if reinstated. The Level-One

Strategic Rationale and Claim Refinement Models showing this construction are depicted

in Figure 35 and Figure 36.

Page 118

Figure 36: Claim Refinement Model for Image Viewer S1 With Alternate Claim

Figure 35: Level 1 SR Model of Image Viewer S2 with Alternate Claim

6.2 Assumption Monitoring and “broken” Label Propagation

The “Can't Increase Speed” alternate claim in Figure 36 is broken from the outset, and

has no effect on the decision whether or not to use a cache: its presence is ignored given

its “Broken” label. However, should the “Extra Speed Needed in S2” claim be broken, the

“break” link between it and the “Can't Increase Speed” claim has the effect of inverting the

“Broken” label during propagation. This means that the “Can't Increase Speed” claim is

reinstated on the Strategic Rationale model and the “Broken” label is removed. Once

reinstated, the “Can't Increase Speed” claim breaks the “Use Cache” task's positive

contribution to the “Maximise Speed” softgoal, arguing against the use of the cache. The

now broken “Extra Speed Needed in S2” claim is removed from the SR model.

 The configuration derived from the models depicted in Figure 35 and Figure 36 with

the “Extra Speed Needed in S2” claim broken, and the alternate “Can't Increase Speed”

claim reinstated, would not use the cache in the S2 target system, Given that the adaptive

image viewer has only a single possible variation point, and only two possible variations.

Adding alternate claims to the models could be considered overly complex. Furthermore,

the decision as to which eventualities should be catered for on a model is notoriously

difficult, and is analogous to the decision of which obstacles to model when performing

KAOS obstacle analysis. Thus, it may be preferable to use a stronger model modification

technique to avoid the scoping difficulty. Using a stronger model modification technique

will yield the same adaptive behaviour in this instance, without the need for additional

model complexity. Inverting the original bottom-level claim's contribution to the Level-

One SR model when broken yields the model in Figure 37.

Page 119

6.2 Assumption Monitoring and “broken” Label Propagation

In Figure 37, instead of the claim “Make”ing the positive contribution the “Use Cache”

task makes to the “Maximise Speed” softgoal, it “Break”s it. Now, instead of the claim

supporting the use of the cache, it supports the selection of the “Don't Use Cache” task.

Thus, the configuration of the adaptive image viewer's S2 target system would again, omit

the cache. Note that there is no “broken” label on the claim in Figure 37, - using this

modification means that there is no need to discount the claim when evaluating the

model.

The strongest model modification that may be performed in response to a broken

assumption is to remove the task that the claim supports the selection of from

consideration when re-making the decision. This modification is suitable if and only if a

claim's holding is sufficient to singularly justify the task's selection, and its absence is

sufficient to render the selection of the task non-viable. Performing this modification in

response to the “Extra Speed Needed in S2” claim no longer holding yields Figure 38.

Page 120

Figure 37: Level 1 SR Model of Image Viewer S2 after Claim Inversion

6.2 Assumption Monitoring and “broken” Label Propagation

The same configuration is reached following this modification. Because there are only

two viable decision alternatives, the only remaining alternative is to select “Don't Use

Cache”. For decisions with three or more potential tasks for selection, specifying that a

task should be removed from consideration should an assumption not hold is a valuable

tool in reducing the likelihood of deadlock if unexpected conditions are encountered,

without complicating the ReAssuRE models.

6.3 ReAssuRE m-DAS architecture

As discussed in the chapter introduction, the use of the term m-DAS does not dictate

that a system use ReAssuRE models to guide its adaptation. An m-DAS could also go about

modifying models using means other than assumption monitoring. However, the use of

ReAssuRE models and assumption monitoring to create a m-DAS implies a specific

architecture, a UML model for which is depicted below.

Page 121

Figure 38: Level 1 Model of Image Viewer S2 after Removal Modification

6.3 ReAssuRE m-DAS architecture

In Figure 39, assumptions are codified as claims in models, and have monitors devised

to validate them. In the event of a monitor determining that an assumption no longer

holds, it raises an event. A model transformer acts on receiving the event, modifying the

model. Once modified (and external to Figure 39), the policy generation method described

in Section 5.2 can be used to re-derive adaptation policies for the m-DAS, with new

adaptation policies dictating new target system specifications. Each of the entities depicted

in Figure 39 is discussed in more detail in the following paragraphs.

The “model” entity in Figure 39 covers both Level-One Strategic Rationale and Claim

Refinement ReAssuRE models, discussed in Chapter 5. Assumptions are represented by

claims in the models. “Monitor”s are devised to validate claims at run time. Should a claim

be invalidated by monitoring data, an “event” is raised. The “event” entity represents a

simple programmatic event, that may be fired by a monitor and listened for by interested

parties. In the architecture described by Figure 39, the only interested party is the model

transformer. It is this “transformer” entity that is key to a ReAssuRE-based m-DAS.

Page 122

Figure 39: m-DAS Architecture Model

6.3 ReAssuRE m-DAS architecture

The “transformer” entity's role is to make adjustments to models to reflect an

assumption that no longer holds, as indicated by the monitor's event for which it listens.

When acting upon a monitor event indicating an assumption no longer holds, the

transformer invalidates the claim representing the assumption on its containing Claim

Refinement Model by labelling it “broken”. The transformer then propagates the “broken”

label throughout the Claim Refinement Model using the label propagation algorithm

described in Section 5.3. If a bottom-level claim on a Claim Refinement Model is labelled

“broken”, the transformer makes one of the model modifications described in the previous

section to the corresponding Strategic Rationale Model. After making a modification,

adaptation policies need to be re-derived to take the model changes into account.

The specific model modification performed by the transformer in response to a

monitoring event is controlled by a monitoring policy. Like adaptation policies,

monitoring policies use an XML format, and specify the claim to be invalidated in

response to a named monitoring event. The policy also stipulates which of the model

modifications should be performed on the Level-One strategic rationale model should the

“broken” label propagate to a bottom-level claim. Figure 40 depicts a snippet from a

monitoring policy devised for the adaptive image viewer. The policy defines the model

transformations that take place in response to the previously discussed “Caching will

Improve Perceived Speed” claim being found invalid.

Page 123

 <MonitoringPolicy><MonitorRule>
 <Monitor><Event>event.CacheSlow</Event></Monitor>
 <Transformation>
 <Node type="claim">
 Caching will Improve Perceived Speed
 </Node>
 <Action>INVERT</Action>
 </Transformation>
 </MonitorRule></MonitoringPolicy>

Figure 40: Single Monitoring Rule from a Monitoring Policy

6.3 ReAssuRE m-DAS architecture

In Figure 40 above, the “MonitoringPolicy” element serves as a container for one or

more “MonitorRule” elements, which define a single model transformation. The

“MonitorRule” element contains two child elements: “Monitor” and “Transformation”.

The “Monitor” element specifies one or more “Event” elements, which stipulate the names

of the events which signal the need to perform a model transformation. The

“Transformation” element describes the model transformation required in response to the

monitoring event; comprising of a “Node” element, which specifies the ReAssuRE model

element upon which the modification is to be performed, and an “Action” element, which

specifies which model modification is to be performed. Valid action types are “REMOVE”,

“INVERT” and “EXCLUDE”; which correlate with the three model modifications

described in Section 6.2. The implemented model transformer, which will be discussed

shortly, performs the “EXCLUDE” modification upon i* task elements in ReAssuRE Level-

One Strategic Rationale models. With this implementation, the determination of which

task a claim supports (and thus which to exclude from consideration in a decision) is made

by the analyst at design time instead of by the m-DAS at run time when using the

“EXCLUDE” transformation.

This thesis presents a proof-of-concept model transformer, capable of listening for

monitoring events raised by assumption monitors and performing the model modifications

specified by a monitoring policy. Model modifications that result in a bottom-level claim

being invalidated result in adaptation policies being re-derived from the updated models.

The model transformer loads monitoring policies in the format illustrated by Figure 40. a

m-DAS utilising the proof-of-concept model transformer adopts the model modification

and reasoning architecture depicted in Figure 41.

Page 124

6.3 ReAssuRE m-DAS architecture

In Figure 41, pairs of Level-One Strategic Rationale and Claim Refinement Models are

reasoned with by the model transformer. Individual assumption monitors (devised

externally) raise events, which the model transformer listens for. The monitoring policy in

Figure 41 is loaded by the model transformer, controlling which model modifications are

performed in response to which monitoring events. After model modification, a separate

policy derivation sub-system uses the changed models to generate updated adaptation

policies.

To conclude, this section has discussed the architecture by which a ReAssuRE-based

m-DAS may be constructed. Monitors are devised for assumptions in claim refinement

models, and in the event that monitoring data indicates an assumption is no longer valid

the corresponding claim on the model is labelled “broken”. The “broken” label propagates

throughout the Claim Refinement Model, and if it reaches a bottom-level claim, action is

taken on the Strategic Rationale model. The precise action taken is defined in a

monitoring policy, and performed by a model transformer. The section has introduced a

Page 125

Figure 41: Implemented Model Transformer Architecture

6.3 ReAssuRE m-DAS architecture

demonstrative model transformer capable of performing model modifications as specified

in a monitoring policy.

6.4 Uncovering Emergent Behaviour in m-DASs

Every DAS risks displaying emergent behaviour as a result of uncertainty about the

environment in which it operates, uncertainty in the suitability of available components

to anticipated environmental conditions, and uncertainty as to how the DAS will respond

to changes in the environment. A DAS may adopt a sub-optimal target system

configuration in some circumstances, or adaptation itself may have some unforeseen

consequence. Furthermore, the mis-identification of, or overlap between boundaries

between domains can lead to a DAS performing frequent transitions between two or more

target systems, a problem known as “thrashing”.

The additional autonomy granted a m-DAS, in terms of its ability to adapt to

conditions outside those anticipated at design time, means that there is an even greater

likelihood of encountering emergent behaviour. Unexpected combinations of components

may be used, or one target system's configuration could, in whole or in part, be used

outside its intended domain. For a DAS, it remains possible to guarantee that the system

will always take the form of one of its specified target systems. a m-DAS offers no such

guarantee, in that any of the target systems may have been modified.

Thus, the verification and validation of a m-DAS must ensure that emergent behaviour

as a result of model modification is both not damaging, and compliant with specified

behaviour in anticipated conditions. This section describes a modified version of the

requirements validation scenario derivation method discussed in Section 5.3 to identify

conditions in which a m-DAS may exhibit emergent behaviour, and to prioritise those

scenarios that are considered most likely to occur. Once these scenarios are identified,

assurance of a m-DAS's behaviour under certain sets of conditions can be delivered

through testing.

Page 126

6.4 Uncovering Emergent Behaviour in m-DASs

In Section 5.3, claims were classified broadly by relative certainty, with less certain

claims acting as markers for areas of uncertainty in developers' understanding of a domain

or of expected behaviour. These areas of uncertainty could be explored using validation

scenarios, seeking to eliminate the uncertainty, or at the very least to ensure that its

consequences are not serious. In this section, a similar classification is performed, with less

certain claims highlighting a need to test to ensure model modification that may occur

will not yield damaging emergent behaviour.

Of course, testing is not the only means of validating software: for a DAS or m-DAS, it

may be possible to deliver an acceptable degree of assurance through monitoring, or by

allowing full or partial human control over adaptation. This latter suggestion remains an

interesting and relatively unexplored research area, and there may well be scope for

methods and software supporting human-instigated or human-approved adaptation to be

developed in the future. However, such approaches do not offer complete assurance, and

the assurance they do offer comes at the expense of system autonomy. Thus, this section

focusses on identifying key scenarios to validate m-DAS behaviour through testing.

m-DAS testing activity can be separated into two categories of activity: testing of a m-

DAS's business logic and of a m-DAS's adaptive behaviour. Testing of a m-DAS's business

logic is akin to that carried out for traditional, non-adaptive systems. Testing a m-DAS's

adaptive behaviour seeks to verify that the configurations adopted in given scenarios are

optimal, or at the very least not damaging.

To test the adaptive behaviour of a conventional DAS, testing scenarios need to be

designed for each of the target systems that can be selected, along with scenarios designed

to test the DAS's ability to correctly identify which target system to adopt in each of the

sets of expected operating conditions partitioned from the environment. This amounts to a

considerable testing burden, but remains within the bounds of feasibility. Unfortunately,

in order to fully test a m-DAS using assumption monitoring and model transformation as

discussed in this chapter, it is necessary to identify and understand the m-DAS's scope for

emergent behaviour completely. To offer this level of testing coverage, it would be

necessary to devise scenarios for every possible combination of assumptions holding and

Page 127

6.4 Uncovering Emergent Behaviour in m-DASs

being broken. Each combination of assumptions holding or otherwise can be thought of as

representing a testing scenario at the modelling stage.

If every possible combination of assumptions holding or otherwise needed to be tested

to uncover emergent behaviour, the additional number of testing scenarios that would be

required for each target system for a m-DAS over a standard DAS (T) is yielded by the

following formula: T=2n-1. The n represents the number of bottom-level claims in the

target system's Claim Refinement Model. Subtracting one removes the scenario in which

all assumptions hold: the original target system design as tested in a standard DAS. This

explosive testing burden means that offering complete assurance that a m-DAS will

exhibit no emergent behaviour as a result of its model modification is infeasible for all but

the simplest m-DASs.

In order to offer an acceptable degree of assurance against damaging emergent

behaviour in m-DASS, some pragmatism is required: instead of devising testing scenarios

for every possible combination of assumption holding or otherwise, test only those

combinations most likely to occur whilst omitting those impossible or unlikely. There is,

of course, a trade-off between the desire to minimise the number of testing scenarios

devised (to minimise cost) and that of maximising assurance: devising testing scenarios for

greater numbers of the less likely scenarios offers greater assurance at greater cost. The

remainder of this section borrows (and adjusts) the claim classification method discussed

in Section 5.3, to demonstrate the use of ReAssuRE models in pruning the testing space for

m-DASs.

The method for identifying key requirements validation scenarios for DASs, discussed

in Section 5.3, relies on applying a broad classification of relative claim certainty to

underlying claims in Claim Refinement Models and labelling the underlying claims to

reflect this classification. The applied labels are propagated throughout the model (and

crucially, to bottom-level claims), and validation scenarios are devised to cover the least

certain bottom-level claims to validate the assumptions on which they are based, or to

verify that the consequences of the assumptions no longer holding were not damaging.

Claims are classified in terms of certainty as either: unbreakable, qualified, or uncertain.

Page 128

6.4 Uncovering Emergent Behaviour in m-DASs

An unbreakable claims is axiomatic, whilst an uncertain claim is one in which a low

degree of confidence is held. A qualified claim is considered relatively safe, and fall

between the two extremes of unbreakable and uncertain claims.

When using this categorisation to prioritise testing scenarios aiming to uncover

emergent behaviour in a m-DAS, a slight change to the definition of the “Unbreakable”

category is required. In this context, claims that the m-DAS has no means of monitoring

directly and can have no other certainty label propagated to them are considered

unbreakable. Claims that are monitored may be considered only qualified or uncertain. By

inference, an axiomatic claim need not have a monitor devised for it. A claims that is

unmonitorable and has no possibility of a broken label being propagated to it has no scope

for causing emergent behaviour through its invalidation, and can as such be removed from

consideration.

Returning to the adaptive image viewer, Figure 22, in Section 5.1.2 on page 90,

depicted a revised design for the S2 target system. A revised design is used because the

original S2 target system for the adaptive image viewer has just one bottom-level claim,

which is of little illustrative benefit here.

The revised S2 target system has a claim stating that the originally specified cache is

ineffective in S2, along with two claims supporting the selection of the newly devised

learning cache, which uses simple machine learning to predict images likely to be loaded

soon in order to cache them. Figure 21 on page 88 depicted the Claim Refinement Model

supporting the three bottom-level claims on Figure 22.

In Chapter 5, this revised S2 target system design and supporting reasoning were

arrived at thanks to the cache having been proven ineffective in use. Given that initial

understanding of the domain and the behaviour of DAS components was inaccurate (the

analyst failed to predict that images would be accessed non-sequentially and thus the

cache prove ineffective), it is reasonable to assume that this new design and reasoning may

too be flawed. Thus, there is some benefit to converting the adaptive image viewer to a m-

DAS, which should prove better equipped to adapt to any further unforeseen

Page 129

6.4 Uncovering Emergent Behaviour in m-DASs

circumstances. By monitoring some of the assumptions in the claim refinement model, the

adaptive image viewer should be able to adjust the design of the S2 target system if the

assumptions upon which it is reliant are again proven false.

There are two claims on Figure 21 that are modelled with a “broken” label. Although

such claims don't influence a target system design, a monitor could be devised to remove

the broken label should the assumption be found to hold in the future. If this were to

occur, the bottom level-claim “Extra Speed Needed in S2” would be reinstated in the

Strategic Rationale model (not shown), and potentially cause the m-DAS to change

behaviour. When applying confidence labels to these initially broken claims, the analyst is

essentially expressing a degree of confidence that the claim will remain broken, rather

than a degree of confidence that the claim will hold at some time in the future. Figure 42

below shows the claim refinement model from Figure 21 annotated with appropriate

confidence labels.

As Figure 42 depicts, only the “Latency is High in S2” claim has been categorised as

unbreakable: although it would certainly be feasible to devise a monitor for the claim, the

fact that the defining characteristic of the D2 domain is high latency means that

monitoring it is unnecessary. There are four claims for which monitors may be devised,

Page 130

Figure 42: Annotated Claim Refinement Model for Learning Cache

6.4 Uncovering Emergent Behaviour in m-DASs

and the certainty labels from these claims are propagated throughout the claim refinement

model in accordance with the rules set out in Section 5.3. Thus, for the revised S2 target

system, there are three bottom-level claims considered qualified, and one considered

uncertain.

Combinations of uncertain bottom-level claims are the key focus of testing aimed at

uncovering emergent behaviour in a m-DAS as a result of model modification. Ideally all

combinations of bottom-level claims not characterised as unbreakable would have tests

devised for them. However, in circumstances in which devising so many test cases proves

infeasible, focussing on the m-DAS's behaviour should one or more uncertain bottom-

level claims no longer hold, will yield some degree of assurance whilst minimising testing

burden. In this example, the behaviour of the m-DAS should the “Must Try to Improve

Speed” claim no longer hold emerges as the key testing focus for uncovering emergent

behaviour. Table 4 below uses the T=2n-1 formula discussed previously to illustrate the

number of testing scenarios required to test m-DAS behaviour after invalidating

combinations of all claims in Figure 42, qualified & uncertain claims, or just uncertain

claims at the bottom level.

All Claims Qualified and Uncertain Uncertain

15 15 1

Table 4: Testing Scenarios Required to Cover the Categories of Claims

In this instance, because there are no unbreakable bottom-level claims, testing the m-

DAS's behaviour after invalidating combinations of qualified and uncertain claims is an

identical task to testing all combinations of claims. If only uncertain bottom-level claims

are considered, a single testing scenario is required; highlighting the m-DAS's behaviour

when this particular claim is invalidated as a key testing concern. Of course, any

procedure reliant on a qualitative certainty classification is vulnerable to the problem of

mis-classification; a claim classified as qualified that later proves false may still cause

emergent behaviour after evading testing coverage if only uncertain claims were

Page 131

6.4 Uncovering Emergent Behaviour in m-DASs

considered. It is, therefore, advisable to cover all but the unbreakable claims with testing

in m-DASs where a risk of emergent behaviour after model modification is unacceptable.

The testing approach advocated in this section offers no coverage of the behaviour of

individual components, or of the system's business logic in any individual configuration.

System components are treated in a black-box manner. However, in terms of potential

modification and resultant changes to the m-DAS's adaptive behaviour, the approach is

analogous to a testing approach that would offer path coverage of a given piece of code.

White-box analysis of Claim Refinement Models allows paths of “Broken” label

propagation to be identified and grouped, with analysis of the SR models allowing all

potential paths the of model transformer, in light of the results of the “Broken” label

propagation analysis, to be investigated. Of course, testing only combinations of qualified

and uncertain claims, or solely combinations of uncertain claims reduces testing coverage

accordingly, with this being analogous to testing the most likely execution paths when

performing standard white-box software testing.

To conclude, this section has explored the issue of emergent behaviour in m-DASs. It

has identified a difficulty in delivering assurance in the potentially modified behaviour a

m-DAS may exhibit after model modification through testing. The testing workload

required to offer a good level of assurance in a m-DAS's behaviour in potentially

unforeseen or only partially understood circumstances is so burdensome as to often prove

infeasible. To combat this, the chapter has introduced a method by which limited testing

resources can be directed to the most likely of scenarios potentially uncovering emergent

behaviour, using ReAssuRE models to remove the need to perform complex analysis to

establish the relative certainty of complex claims by deriving the relative certainty of

simpler, easier to categorise claims. The issue of testing complexity for m-DASs, and the

test-case pruning method discussed in the chapter have been published in preparation for

this thesis [4].

Page 132

6.5 Chapter Conclusion

6.5 Chapter Conclusion

Previous work in requirements monitoring has suggested that systems may benefit

from monitoring the degree to which they are able to satisfy certain key requirements. A

DAS, however, has the potential to take action in circumstances where this monitoring

data indicates under-performance or a failure to satisfy requirements. Also, the emerging

models@run.time paradigm in which a system loads and reasons with models of its own

behaviour indicates an interest in this style of system. This thesis uses the term model-

driven Dynamically Adaptive System (m-DAS) to identify a DAS that uses its design-time

models to guide its run-time adaptation, and this class of system represents a step forward

in both of the aforementioned research areas.

This chapter illustrates how a m-DAS could be constructed using ReAssuRE models to

guide run-time adaptation, with monitoring of assumptions used as a means of modifying

models to reflect unanticipated operating conditions. The chapter discusses the different

components necessary to build such a system, and presents a reference implementation of

the key model transformer component capable of modifying models in response to

monitoring data (in the form of events) in accordance with a monitoring policy. The

potential increase in autonomy offered by a m-DAS comes at a price of complexity, and

thus a m-DAS offers less predictability than a DAS. The chapter explores the issue of

assurance in m-DASs, with the reduction in predictability remaining challenging.

The chapter also provides answers to two of this thesis' research questions, which are

presented in Section 1.3:

How can a system be designed with a greater degree of autonomy than current

state-of-the-art DASs, and is the extra autonomy useful?

a m-DAS using ReAssuRE models to control adaptation and assumption monitoring to

adjust the models as the environment change offers a greater degree of autonomy than a

current state-of-the-art DAS, in that the m-DAS possesses a limited ability to adjust its

behaviour to suit operating conditions outside those envisaged at design time. This ability

Page 133

6.5 Chapter Conclusion

offers the possibility of designing systems to operate in environments with a greater

degree of uncertainty than previously possible, whilst still maintaining the ability of a

DAS to operate in volatile, changeable environments.

How can the testing workload be managed in systems with greater autonomy?

The answer to this question is less positive: the testing workload in a m-DAS using

ReAssuRE models and assumption monitoring is high. It is necessary, as it is for standard

DASs, to test individual target systems, and the mechanism that decides on and performs

the transitions between them. Additionally, it is necessary to verify that the m-DAS's

behaviour should an assumption no longer hold is correct, or at the very least not

damaging. It is possible to afford some degree of assurance through testing by prioritising

the most likely scenarios in which emergent behaviour may occur, and it is possible to

remove scenarios that have no possibility of provoking emergent behaviour from the

testing regime. However, in many such m-DASs a degree of assurance will have to be

sacrificed to keep testing workloads feasible. For m-DASs in which this sacrifice is

unacceptable, other methods of delivering assurance such as monitoring or human-in-the-

loop adaptation may be worthwhile, but are beyond the scope of this thesis.

The next chapter seeks to validate the work presented in this and the previous chapter

by way of a more complete case study, which focusses on a more complex DAS than has

been used to illustrate the approach.

Page 134

7 Evaluation

7 Evaluation

This chapter validates the ReAssuRE modelling approach's usefulness for larger, more

complex DASs than the adaptive image viewer used as an example throughout this thesis,

by way of a retrospective case study, focussing on a previously deployed DAS. The novel

model uses demonstrated throughout Chapters 5 and 6 are validated in this larger case

study, demonstrating the benefits discussed in the respective chapters on a real-life DAS.

GridStix is a DAS deployed on the River Ribble in North West England that performs

flood monitoring and prediction [2]. It takes the form of an intelligent wireless sensor

network with multiple nodes measuring river depth and flow rate using a variety of

sensors, including the analysis of images taken with an on-board digital camera. The

GridStix system uses the GridKit middleware [39], which provides the system's adaptive

capabilities.

The flow rate and river depth data is used by a point prediction model, which predicts

the likelihood of the river flooding using data from the local node and data cascaded from

nodes further upstream. The more upstream data available, the more accurate the

prediction.

The environment in which GridStix operates is volatile, as the river is liable to

flooding. When the river floods, the nodes are in danger of submersion, and of sustaining

significant damage from water-borne debris. As such, the GridStix system needs to be able

to maximize its ability to withstand node failure in order to maintain the connectivity of

the surviving nodes.

The GridStix nodes have processing capability, which allows processing of the data and

execution of flood prediction models on-site with the GridStix system acting as a

lightweight grid. However, the nodes are resource-constrained and some tasks,

particularly flow rate calculations which involve processing digital camera images, are best

performed by distributing computation among the nodes which increases prediction

accuracy.

Page 135

7 Evaluation

Distributing computation has a cost in terms of the power consumed by inter-node

communication, which is a serious issue since GridStix's location is remote, and power has

to be provided by batteries and solar panels. The GridStix system can communicate using

different spanning tree algorithms, trading off fault tolerance and power consumption. As

such, even from this brief overview it is possible to infer that GridStix has three key

conflicting softgoals: “Energy Efficiency”, “Fault Tolerance” and “Prediction Accuracy”.

When specifying the GridStix system, domain experts (hydrologists) partitioned the

operating environment into three distinct domains: D1 (Normal), D2 (High Flow) and D3

(Flood). The D1 (Normal) domain is characterised by a quiescent river, with little

imminent risk of flood or danger to local residents or the nodes themselves. The D2 (High

Flow) domain features a fast-flowing river, that may suddenly flood. The D3 (Flood)

domain occurs when the depth increases and the river is about to flood, which means that

the nodes are in imminent danger of failure. For each domain, a target system was devised,

with target system S1 tailored for domain D1, S2 for D2 and S3 for D3 respectively.

The GridStix developers whilst prototyping constructed a basic simulator [113],

capable of emulating inter-node communication, visualising the currently active network

topology of the GridStix nodes under simulation, and calculating both the power used by

node operation and the power generated by the nodes' solar panels. To validate the

behaviour of GridStix system under configurations devised using ReAssuRE models (either

automatically or manually) for scenarios discussed in this chapter, several features have

been added.

Firstly, the simulator was extended to support the loading of adaptation policies

directly, rather than a simulator scenario needing to be coded to set up the simulated

GridStix nodes in a given configuration.

Secondly, support has been added for scripting simulated weather conditions, which

affects the behaviour of the river (and thus the behaviour of the GridStix nodes, as they

observe the river) and the performance of the GridStix nodes' solar panels.

Page 136

7 Evaluation

Finally, support has been added allowing node failures to be simulated: the GridStix

system's operating environment is hostile, with nodes potentially failing due to debris in

the flooding river, prolonged exposure to notably cold and wet conditions, or even due to

interference from local wildlife.

Together, these changes allow prototype adaptation policies to be analysed before

being deployed on the actual system. The support for scripting weather conditions allows

the performance of the GridStix nodes in various configurations to be assessed in both

conditions previously experienced by the GridStix system and recorded, and conditions

specially designed to test the configuration under study to the extreme. A need to better

understand and optimise the behaviour of the GridStix system after losing one or more

nodes to damage emerged after deployment, a task eased by the simulator's support for

forcing node failure.

The results of a simulator run for a given configuration under a given set of

environmental conditions are typically expressed quantitatively by way of the number of

simulated hours elapsed before a sufficient number of GridStix nodes fail to render the

network fragmented i.e. one or more nodes unable to send or receive data to or from the

rest of the nodes. A fragmented network does not necessarily represent a complete system

failure, the remaining body of nodes able to communicate will still work together to reach

flood predictions, but the accuracy of the predictions will be compromised by the non-

availability of data from serviceable nodes. Other less frequently used metrics are the

number of GridStix nodes that either fail due either to battery exhaustion or become

fragmented from the network over a set number of hours, or the number of hours elapsed

before only a set number of GridStix nodes remain in communication with each other and

able to arrive at a flood prediction.

In addition to these quantitative results, the visualiser enables certain other

observations to be made during simulation runs, which are more qualitative in nature.

Observing the simulated GridStix system transition between target systems repeatedly, a

condition known as thrashing, would indicate a problem with the trigger conditions

controlling adaptation, and ultimately a problem with the domain partitioning carried out

Page 137

7 Evaluation

during initial analysis. Observing that in a given scenario, one specific GridStix node

seems to be using significantly more power than the others, for example because the

chosen network topology routes a significant proportion of traffic through the node, may

allude to a potential node failure if the scenario is elongated, or if more challenging

environmental conditions are encountered. These observations do not form part of the

simulator results, but offer a useful means of feedback in both refining configurations and

designing challenging weather condition scripts for simulation.

7.1 ReAssuRE models for the GridStix System

This section presents the complete set of ReAssuRE models for the GridStix system,

discussing each in turn. At the highest level of abstraction, a Level-One Strategic

Dependency model is created for the GridStix system as a whole, showing the actors, goals

and dependencies involved in the system. This SD model is depicted in Figure 43.

Page 138

7.1 ReAssuRE models for the GridStix System

The Strategic Dependency model for the GridStix system depicted in Figure 43 is

considerably more complex than that created for the adaptive image viewer (depicted in

Figure 2 on page 50). The GridStix system's dependency on the GridKit middleware means

Page 139

Figure 43: Level-One Strategic Dependency Model for GridStix System

7.1 ReAssuRE models for the GridStix System

an additional actor on the model, and additional dependency relationships to reflect the

dependencies between the GridStix system and its adaptive infrastructure. Figure 43

shows that the principal stakeholder for the GridStix system is the UK's Environment

Agency, who are responsible for managing and monitoring the river. The Environment

Agency depend upon the GridStix system to predict flooding, and to do so as accurately

and reliably as possible whilst using as little energy as possible.

It could be argued that the need for “Energy Efficiency” and “Fault Tolerance” are both

derived from a higher-level reliability softgoal. However, the GridStix system's

environmental constraints prevent any higher-level softgoal from being satisficed

(sufficiently satisfied) via means other than the system having a degree of fault tolerance

and managing power consumption to prevent battery exhaustion. Thus, the higher-level

softgoal remains out of scope in Figure 43.

The only difference between the GridStix Level-One SD model depicted in Figure 43

and a LoREM Level-One SD model of the DAS is the separation of GridKit's roles in

GridStix. As discussed in Section 4.3, The roles of an adaptation mechanism, a decision-

making mechanism and an adaptation mechanism are separated from the adaptive

infrastructure role in the ReAssuRE modelling process to allow for DASs in which the

three roles are played by separate concrete agents, and to provide more detail at Level

Two. The three roles are likewise separated in the SD model, but in systems such as

GridStix in which the three roles are played by a singe agent, the extra detail has no

specific additional benefit.

7.1.1 Level-One Strategic Rationale Models

As discussed in the chapter introduction, the GridStix system's operating environment

was partitioned by domain experts into three domains: normal, high flow and flood;

referred to as D1, D2 and D3 respectively. The target systems S1, S2 and S3 correspond to

Page 140

7.1.1 Level-One Strategic Rationale Models

each domain, and this sub-section presents and discusses the Level-One Strategic

Rationale models for each in turn.

Figure 44 depicts the Level-One strategic rationale model for the S1 target system.

Figure 44 shows that the GridStix system's main goal (upon which the stakeholders

depend on the GridStix system fulfilling) is to “predict flooding”. The GridStix system opts

to fulfil this goal using a point prediction algorithm, as indicated by the “provide point

prediction” task. The task of providing a point prediction is complex, and is divided into:

“measure [river] depth”, “calculate [river] flow rate” and “communicate data”. Measuring

the depth and flow rate depends of course on the data being available from sensors, which

remain out of scope on Figure 44. The “communicate data” task may be completed by

satisfying the “organise network” and “transmit data” goals. “Organise network” may be

satisfied either by organising the GridStix Nodes using a fewest hop or shortest path

Page 141

Figure 44: Level 1 SR Model of GridStix S1 Target System

7.1.1 Level-One Strategic Rationale Models

topology, as controlled by the “use SP topology” and “use FH topology” tasks, respectively.

The “transmit data” goal may be achieved by using either Bluetooth or Wi-Fi for radio

transmission, as indicated by the “use Bluetooth” and “use Wifi” tasks respectively.

Finally, the “Calculate Flow Rate” Goal may be achieved either by analysing images taken

with the on-board digital camera on the local node, or by distributing the calculation

throughout the grid, as suggested by the “Single Node Image Processing” and “Multi Node

Image Processing” tasks, respectively.

From an adaptation perspective, there are three variation points in Figure 44, where a

goal may be satisfied by two or more tasks to be decided between. These goals are

“Transmit Data”, “Organise Network” and “Calculate Flow Rate”. For the “Transmit Data”

goal, “Use Bluetooth” hurts the GridStix system's fault tolerance, because its inferior range

means that fewer nodes are within transmission distance of one-another. However, using

Bluetooth to transmit data uses significantly less power than Wi-Fi. For the “'Organise

Network” goal, organising the GridStix nodes using a fewest hop topology increases the

fault tolerance of the GridStix system as fewer nodes are depended upon to relay a single

message, but does so at a cost of greater power consumption, given that each hop's

transmission takes place over a greater distance. For the “Calculate Flow Rate” goal, using

single-node image processing saves a significant amount of power by reducing the need for

radio transmission, but the (significant) length of time taken to analyse the image and

yield a flow rate value on a single node means that point predictions can be run less

frequently, which has the effect of worsening the accuracy of flood predictions.

The D1 domain is characterised by a quiescent river, with little risk of either the river

flooding or the GridStix nodes becoming damaged. As such, the S1 target system seeks to

conserve power wherever possible, maximising energy efficiency. If possible, the GridStix

system's stakeholders would prefer to offer the most accurate predictions and the greatest

degree of fault tolerance possible, but the need to conserve energy (and thus charge the

battery where possible whilst in this configuration) dictates a more balanced approach.

The rationale behind each selection decision is recorded in the five claims on Figure

44. The decision to use Bluetooth over Wi-Fi for data transmission is supported by two

Page 142

7.1.1 Level-One Strategic Rationale Models

claims. The “Faults Unlikely in S1” claim essentially downplays the significance of the

negative contribution using Bluetooth makes to fault tolerance. The “No Need to Waste

Power on Wi-Fi” claim speaks to the fact that, given that the river is quiescent and the

risk of node failure due to damage is diminished, increasing power consumption to

increase resilience is unjustifiable, highlighting the negative impact of “Use Wifi” on

energy efficiency.

The decision to organise the GridStix nodes using a shortest path topology instead of

fewest hop, like the previous decision, is supported by the “Faults Unlikely in S1” claim.

The claim's “break” contribution argues that the negative impact of “Use SP Topology” on

“Fault Tolerance” should be overlooked. The “No Need to Waste Power on FH” argues

that the additional power required by a fewest hop topology to improve resilience is not

justified, much like the “No Need to Waste Power on Wi-Fi” claim in the previous

paragraph.

The final decision, governing the use of single node image processing over multi node,

is supported by the “Multi-Node Image Processing uses Too Much Power” claim and the

“Single Node Image Processing is Accurate Enough for S1” claim. The negative impact of

“Single Node Image Processing” on the “prediction accuracy” softgoal is negated by the

former claim, and the latter claim highlights the increased power consumption of “Multi

Node Image Processing”.

Moving on to the D2 domain, the GridStix system is here faced with a river whose flow

rate has increased, and is in danger of flooding relatively suddenly. In these circumstances,

it is particularly important that the S2 target system is specified such that flood predictions

are as accurate and timely as possible. Furthermore, should the river begin to flood

unexpectedly, there is a danger of node failure. Figure 45 depicts the Level-One strategic

rationale model for the S2 target system.

Page 143

7.1.1 Level-One Strategic Rationale Models

The S2 target system has the same goals and means to achieve them as the S1 target

system, along with the same variation points. However, the decisions reached on the

specification of the S2 target systems are different, given the different circumstances in

which it operates. The three claims in Figure 45 give a brief indication of the rationale

behind each decision.

The decision to use Wi-Fi rather than Bluetooth for communication in S2 is supported

by the “Bluetooth is too risky for S2” claim, which alludes to the fact that using Bluetooth

with its shorter range would risk network fragmentation should a relatively small number

of nodes fail. The claim's “make” link highlights the negative impact selecting Bluetooth

would have on the “Fault Tolerance” softgoal.

Likewise, the decision to use multi-node image processing to determine the river's

flow rate from images taken with nodes' on board digital cameras, rather than performing

Page 144

Figure 45: Level 1 SR Model of GridStix S2 Target System

7.1.1 Level-One Strategic Rationale Models

the analysis on a single node is supported by the “Single Node Image Processing Isn't

Accurate Enough for S2” claim. The rationale here is that the additional time taken to

analyse images on a single node means that predictions are made less frequently and with

less data, reducing the accuracy. As with the previous claim, the “make” link highlights

the negative impact of the “Single Node Image Processing” task on the “Prediction

Accuracy” softgoal.

The final decision, to use a shortest path topology to organise the nodes on the

network, has been reached on power-saving grounds, much as it was in the S1 target

system. This time, however, the rationale is simpler. For S1, a fewest hop topology was

adjudged not to be necessary, as well as being expensive in terms of energy. For S2, the risk

of sudden flood and potential node failure means that any measure improving resilience

would be welcome, but the additional power consumption associated with a fewest hop

topology simply could not be afforded. As such, for the S2 target system a simpler rationale

is recorded with the single “FH uses too much power” claim, which uses a “make” link to

highlight the negative impact “Use FH Topology” would have on the “Energy Efficiency”

softgoal.

The third, D3 domain, is characterised by a river that has begun to flood. In these

circumstances the GridStix nodes are in significant danger of submersion which would

(hopefully only) temporarily prevent them from communicating with the other nodes or

collecting solar power. There is an additional danger of a node sustaining damage from

debris floating downstream. As such, the S3 target system's specification focusses on

resilience. Figure 46 below depicts the Level-One strategic rationale model for the S3

target system.

Page 145

7.1.1 Level-One Strategic Rationale Models

The three claims in Figure 46 record the rationale behind the selection decision taken

for each variation point. The decision to use Wi-Fi for communication rather than

Bluetooth, and the decision to use multi-node image processing rather than single-node

share the same outcome and short rationale with the S2 target system. The third decision,

which dictated the use of a fewest hop network topology instead of shortest path, is where

the S3 target system design differs to that of S2. For this decision, it was decided that the

significant risk of nodes becoming temporarily or permanently unable to form part of the

GridStix network meant that a shortest path topology, despite its lower energy

consumption, should be overlooked in favour of the more resilient fewest hop topology.

The “SP is too risky for S3” claim uses a “make” link to emphasise the negative

contribution “Use SP Topology” makes to the “Fault Tolerance” softgoal.

Page 146

Figure 46: Level-One SR model for GridStix S3 Target System

7.1.1 Level-One Strategic Rationale Models

The Level-One SR models presented in this subsection are significantly more complex

than their LoREM counterparts, which present only the selected alternative for each

decision in a target system, and contain no claims. The extra complexity improves the

traceability of the ReAssuRE models significantly, as detailed in Section 7.2.

7.1.2 Level-One Claim Refinement Models

The previous sub-section introduced the Level-One Strategic Rationale models for

each of the target systems specified for GridStix. This sub-section focusses on the Level-

One Claim Refinement Models, which elaborate on the brief rationale recorded by the

claims on the Level-One Strategic Rationale models presented and discussed in the

previous sub-section. The claim refinement models for the S1, S2 and S3 target systems are

discussed, in turn, below.

Figure 47 depicts the Level-One Claim Refinement Model for the S1 target system.

The five claims on the Level-One Strategic Rationale model depicted in Figure 44 on

page 141 are repeated in Figure 47 as bottom-level claims. These are supported, in various

combinations, by four claims made about the environment, and three about the behaviour

of various components available for selection. The four environmental claims: “Only

Page 147

Figure 47: Claim Refinement Model for GridStix S1 Target System

7.1.2 Level-One Claim Refinement Models

Source of Fault is the River”, “River is Unlikely to Flood in S1”, “System will Usually be in

S1” and “Energy Efficiency is Most Important in S1” are relatively self-explanatory. The

“Only Source of Fault is the River” claim was added when revisiting the model, because

the “River Unlikely to Flood in S1” had previously been the sole support for the “Faults

Unlikely in S1” claim. The fact that the river is unlikely to flood is visibly insufficient to

make the derived assertion: which indicated an implicit assumption. Thus, the previously

un-acknowledged “Only Source of Fault is the River” assumption is made explicit and

modelled.

The three claims about the behaviour of available components: “Wi-Fi Uses More

Power than Bluetooth”, “FH Topology uses More Power [Than SP]” and “Multi-Node

Image Processing uses More Power [Than Single-Node]” are explicit statements of facts

underpinning the rationale in the bottom-level claims. Should one of these claims later be

discovered to be incorrect, the decisions made using this faulty understanding can be re-

visited.

Figure 48 depicts the Level-One Claim Refinement Model for the S2 target system.

As with the S1 target system, the three claims from the strategic rationale model

depicted in Figure 45 on page 144 appear in Figure 48 as bottom-level claims. The first:

“Single Node Image Processing isn't accurate enough for S2”, is supported by two

underlying claims: “There's a small risk of flood in S2” and “Single Node Image Processing

isn't very accurate”. Together, these two supporting claims elaborate on the rationale in

Page 148

Figure 48: Claim Refinement Model for GridStix S2 Target System

7.1.2 Level-One Claim Refinement Models

the bottom level claim: that, given the risk of flooding whilst the GridStix system is in the

S2 configuration, the lesser degree of accuracy consequent to performing image flow rate

analysis on a single node is unacceptable.

The remaining two bottom-level claims are particularly interesting, because the

softgoal contributions of the candidate tasks on the associated Strategic Rationale model

are identical yet the decisions reached in each case are conflicting. These conflicting

decision outcomes are one of the motivators for the use of claims over some quantitative

contribution link or softgoal weighting scheme to record decision rationale. In the case of

the decision governing data transmission method, the more power hungry and more

resilient Wi-Fi is used, whereas for the decision governing network topology, the less

resilient and more energy efficient shortest path topology is used. For the former, the

rationale captured by the claims is that the risk of flooding in D2 implies a risk of node

failure, and that Wi-fi transmission improves resilience considerably. For the latter, the

rationale is that the slight improvement in resilience offered is overridden by a dramatic

increase in power consumption (given that radio transmissions take place over increased

distances using considerably more power).

Figure 49 depicts the Level-One Claim Refinement Model for the S3 target system.

Page 149

Figure 49: Claim Refinement Model for GridStix S3 Target System

7.1.2 Level-One Claim Refinement Models

As with the previous two target systems, the three bottom level claims on the

associated strategic rationale model (Figure 46 on page 146) appear in Figure 49 as bottom-

level claims. Unlike the S2 target system, however, the decisions reached for the S3 target

system are consistent with one-another. In S3, the imminent risk of flood and node failure

means that the system adopts its most accurate and most resilient configuration at the

expense of energy efficiency. The rationale for all three decisions is that given the risk of

flood and therefore fault, the more resilient or accurate alternative should be preferred.

Although the additional tracing information recorded on ReAssuRE Level-One SR

models allows far more rationale inferred than their LoREM counterparts, or any standard

i* model, the rationale it is possible to convey in a short claim label is often imprecise or

simplistic. The ability to record a more detailed rationale using Claim Refinement Models

serves not only for later reference, but allows the basis of a decision rationale to be

examined more thoroughly.

The case study has demonstrated that merely the act of constructing a Claim

Refinement Model can lead to previously implicit assumptions being identified. An

unidentified assumption underpinning potentially several decisions could, potentially,

require significant changes to a DAS's requirements specification should it later be found

false. Uncovering the assumption earlier in the requirements engineering process allows

the assumption's safety to be assessed whilst the consequences of adjusting design

decisions based upon it are less severe. In the case of the uncovered assumption in the

GridStix system, this meant that the possibility of external interference to the system by

local wildlife was considered. As a result, extra attention was paid to decisions affecting

GridStix's fault tolerance, and that simulation was undertaken to establish the potential

impact of node failure caused by forces other than the river.

Page 150

7.1.3 Level Two Models

7.1.3 Level Two Models

The previous two sub-sections presented the different types of Level-One model

created for individual target systems during the ReAssuRE process. Level-Two models

focus on the transitions between target systems, defining the condition(s) triggering

adaptation and pairs of target systems which can be validly transitioned between. For the

GridStix system, all three target systems may transition to any of the others validly, which

would require six Level-Two models. However, given the high degree of similarity

between the models only a single Level-Two model will be presented and discussed in this

sub-section. Figure 50 shows the Level-Two model covering the transition between the S1

and S2 target systems.

As in the Image Viewer Level Two model discussed in Section 4.3, Figure 50 is

separated into three distinct roles: the monitoring mechanism, decision making

mechanism and the adaptation mechanism. In the GridStix system, the GridKit adaptive

Page 151

Figure 50: Level 2 Model of GridStix S1 to S2 Transition

7.1.3 Level Two Models

middleware [39] plays each of the roles, but this will not necessarily be the case for other

DASs. The monitoring mechanism monitors the flow rate and depth of the river, collating

and supplying the data to the decision making mechanism. The decision making

mechanism determines the current state of the environment, identifying a change of

domain from D1 to D2. When this occurs, the decision making mechanism triggers

adaptation, in this case by setting the “HIGH_FLOW” flag, which is effected by the

adaptation mechanism which transitions the GridStix system from S1 to S2.

As discussed in Section 7.1, the additional complexity in ReAssuRE models stemming

from the separation of LoREM's “Adaptive Infrastructure” role into the three roles

depicted in Figure 50 is of limited illustrative benefit in systems, such as GridStix, in

which all three roles are played by a single agent. In systems utilising an adaptive

infrastructure that plays all three roles, the benefit of the additional complexity

consequent to all three roles' inclusion lies merely in the ability to perform policy

derivation, as discussed in Section 7.3.

7.2 Tracing Examples

The change classification presented in Section 5.1.1 discussed different types of change

a DAS specification may be subject to. One of the benefits of ReAssuRE models is their

enhanced tracing support, easing the process of model evolution. This section

demonstrates how ReAssuRE models' enhanced tracing support was used to refine the

GridStix system design in two scenarios. The first covers a broken assumption stemming

from faulty domain understanding, and the second a set of environmental conditions

unforeseen at design time.

Assumptions are made extensively when scoping and specifying any system, and the

complexity of environments for which DASs prove most useful means that sometimes

fundamental assumptions made during early-phase RE can later be found to be (or proved

to be) false. ReAssuRE models make explicit the assumptions on which component

Page 152

7.2 Tracing Examples

selection decisions are based, allowing the impact of a faulty assumption to be assessed and

for decisions reliant on broken assumptions to be traced and re-made in light of updated

information and new understanding. For the GridStix system, it was discovered after

deployment that the GridStix system typically issued flood alerts whilst in the S2

configuration, and that by the time the GridStix system needed to adapt to S3 because the

nodes were in danger, timely and accurate flood predictions were less important than first

expected.

The importance of timely and accurate flood predictions in S3 was an assumption

captured explicitly in the Level-One Claim Refinement Model for S3, Figure 49 on page

149. This means that the impact of the claim no longer holding could be assessed using

ReAssuRE models, thanks to their support for this type of forward tracing.

The claim in Figure 49 under scrutiny is “Prediction Accuracy is Crucial in S3”. The

improved understanding that has emerged through monitoring the GridStix system in

operation clearly shows that this claim doesn't hold. Thus, a “broken” label may be applied

to the claim, and propagated throughout the model as demonstrated in Section 5.3. The

resulting Claim Refinement Model is depicted in Figure 51.

After propagation, one-bottom level claim has been broken, which means that the

decision(s) reliant on it in the Strategic Rationale model need to be revisited. The Strategic

Page 153

Figure 51: Modified GridStix S3 Claim Refinement Model: Broken Assumption

7.2 Tracing Examples

Rationale model showing the now broken “Single Node Image Processing isn't Accurate

Enough for S3” bottom-level claim is depicted in Figure 52.

In Figure 52, the broken bottom-level claim supports the selection of multi node image

processing. This decision now needs to be revisited. Given that predictions are now

considered less important than survival in the S3 target system, switching to single node

image processing and improving the target system's energy efficiency seems wise. The

updated Level-One Strategic Rationale and Claim Refinement Models featuring this

changed decision outcome and new rationale are depicted in Figure 53 and Figure 54.

Page 154

Figure 52: Modified SR Model for GridStix S3 Target System: Broken Assumption

7.2 Tracing Examples

As discussed in Section 5.1.1, an environmental change to a DAS's specification could

take the place of a new environmental constraint, an adjustment to domain boundaries, or

Page 155

Figure 53: Modified SR Model For GridStix S3 Target System: New Rationale

Figure 54: Modified Claim Refinement Model for GridStix S3: New Rationale

7.2 Tracing Examples

an entire domain being added, removed, or merged with another. This could be driven by

improvements in understanding of the environment throughout the DAS's life cycle, or by

the environment itself changing over time. For the GridStix system, an unforeseen set of

environmental conditions was discovered after deployment, occurring when the river is

occluded downstream from the GridStix system. When the river is either completely

blocked or the water's flow restricted, either due to a man-made obstacle or debris,

conditions upstream deteriorate, with the river depth rising. The GridStix system mis-

identified this depth increase as a developing flood, leading to a false alarm. However, a

blockage downstream from the GridStix nodes reduces the measured flow rate, which the

DAS can use to distinguish the D4 (blockage) domain from D3 (flood).

Although a river blockage does not necessarily pose a danger to local residents, and

should not trigger a flood alert, there is a significant risk of the GridStix nodes becoming

submerged or damaged as the river's depth increases, causing them to fail. Furthermore,

should the blockage be removed (or breached) suddenly, the river's behaviour could be

very difficult to predict without data sourced downstream of the blockage. Therefore, it

would be desirable to report the condition to the Environment Agency, the system

stakeholder who already receive flood warnings. Out of system scope, the Environment

Agency would seek to remove occluding objects and restore the river's natural flow. It

could be argued that the emergence of the blockage domain, and the requirement to

report its encounter are two separate changes; one environmental and one stakeholder

requirements change. However, requiring the DAS to report that it has adopted a

particular target system configuration does not add an additional goal to the Level-One

models of an individual target system, it adds an additional goal to the Level Two model of

the transitions to the new target system.

As discussed in Section 5.1.2, the introduction of a new domain requires a new Level-

One Strategic Rationale and Claim Refinement Model to be created. Where the target

system's goals and available components are the same as another's, the existing Strategic

Rationale model may be copied, minus the claims and with the appropriate change to the

actor's name to make the model for the new target system. From there, component

Page 156

7.2 Tracing Examples

selection decisions are taken for the new target system, the outcome of which are

recorded on the Strategic Rationale model with claims. The tracing need supported by this

process is the ability to identify the component selection decisions that are taken per

target system, and ReAssuRE Level-One models' recording of both rejected and selected

decision alternatives means that these decisions are easily identified thanks to the

presence of several tasks to potentially satisfy a goal via a means-end link on the model.

The completed Level-One Strategic Rationale model for the S4 target system is depicted in

Figure 55 below.

As Figure 55 shows, the S4 target system has been specified as using Wi-Fi for inter-

node communication, with the nodes themselves organised using a fewest hop topology.

Single node image processing has been specified to derive flow rate measurements from

the on-board digital camera. These three specification decision are each justified by a

claim. The decisions governing the use of Wi-Fi and fewest hop topology essentially share

Page 157

Figure 55: Level 1 SR Model for new GridStix S4 Target System

7.2 Tracing Examples

the same as their equivalents in the S3 target system. The final decision, however, is

underpinned by a “Single Node Image Processing is Accurate Enough for S4” claim, which

eludes to the full rationale which is that, given that local residents are not in danger from

a flood, less accurate predictions can be used to save power. The Level-One Claim

Refinement Model for the S4 domain is depicted in Figure 56.

Given the rationale behind the decision to use Wi-Fi over Bluetooth, and that to use a

fewest hop rather than a shortest path network topology is essentially the same as for the

S3 target system, it is no surprise that the right half of Figure 56 is likewise similar to

Figure 49: the claim refinement model for S3. The left hand side of the model, uses a claim

to assert that although the localised flooding encountered in S4 presents a danger to the

GridStix nodes, no such danger is presented to local residents, and thus prediction

accuracy is less important. This, combined with the fact that the GridStix system can save

power by using single-node image processing means that the S4 target system is specified

using this, rather than the more accurate but less energy efficient multi-node image

processing.

The Level-Two models associated with the S4 target system are somewhat more

interesting than those encountered previously: the S4 target system can only ever be

transitioned to from the S1 target system, but may be transitioned from to either the S1 or

Page 158

Figure 56: Claim Refinement Model for new GridStix S4 Target System

7.2 Tracing Examples

S2 target system, depending on how quickly the blockage is cleared and the level of recent

rainfall. The GridStix system may not transition from S2 to S4 because the rise in depth

would be interpreted as a flood meaning that the S3 target system was adopted, and the

GridStix system may not transition from S3 to S4 given that the river has already burst its

banks, and any blockage between the banks will simply worsen the flood. Thus, when

introducing the S4 target system, Level-Two models need to be created for the S1-S4, S4-S1

and S4-S2 transitions. As mentioned at the start of the blockage tracing example, the

stakeholder requirements change to report the detection of a blockage (or rather, that the

DAS has adopted the S4 target system configuration) affects the Level-Two models of the

transitions to the S4 target system, with model covering the S1 to S4 transition depicted in

Figure 57.

The decision as to which of the three adaptive infrastructure roles depicted in Figure

57 would be assigned responsibility for reporting the blockage was marginal. The

monitoring mechanism could have been re-designed to report a low flow rate coupled

Page 159

Figure 57: Level Two Model for GridStix S1 to S4 Transition

7.2 Tracing Examples

with a high depth. Likewise, the adaptation mechanism could have been re-designed to

alert stakeholders when adapting from S1 to S4. However, it was decided that, given the

decision making mechanism is already required to identify the blockage condition to fire

an event triggering adaptation, it should bear responsibility for reporting blockages.

The need to evolve Level-Two models in response to a stakeholder requirements

change is a good example of the variable scope of such changes. Some user requirements

changes will add a new goal to one or more Level-One Strategic Rationale models. Some

may remove a decision alternative from one or more models. More extreme examples may

necessitate a complete re-design of the system. It is impossible to fully anticipate and cater

for the tracing needs of such varied changes, and this thesis makes no claims of ReAssuRE

models' improved traceability easing stakeholder requirements changes in general. The

requirement to report blockages, however, is a relatively minor addition which the

ReAssuRE models' separation of modelling by level (as specified in [10]) allows to be

handled efficiently.

To conclude, this section demonstrates the usefulness of ReAssuRE models' improved

traceability in a real DAS that is larger and more complex than the adaptive image viewer

used to illustrate the modelling method. The likelihood of DAS specifications being

subject to change elevates requirements traceability from the sort of issue important only

to large-scale, complex systems to a key requirement of a DAS RE process, model-driven

or otherwise. The section demonstrates two different types of tracing activity,

demonstrating that the general improved traceability of ReAssuRE models supports

different types of tracing activity, and thus eases the implementation of different classes of

specification change.

Without the additional tracing information present in ReAssuRE models, the

modelling effort involved in performing the illustrated changes would be significantly

greater. The increased modelling effort would be further exaggerated in cases where

knowledge of decision alternatives considered or of the rationale underpinning decisions

has been lost, perhaps by personnel leaving the project.

Page 160

7.3 Policy Derivation

7.3 Policy Derivation

Section 5.2 presented a tool which derived adaptive behaviour from ReAssuRE models,

outputting to the Genie DSL [107], which allows adaptive behaviour to be examined,

reasoned with, and exported to policies for adaptive middleware platforms. The Level-One

Strategic Rationale models for the S1 (Figure 44), S2 (Figure 45), and S3 (Figure 46) target

systems, along with the complete set of Level-Two models (for example, Figure 50) were

used to derive Genie DSL representation of the GridStix system's adaptive behaviour.

Figure 58 shows the tool whilst generating the Genie model.

The resultant Genie model is depicted in Figure 59.

Page 161

Figure 58: Screen-Shot Genie DSL Model Derivation Tool

7.3 Policy Derivation

The Genie model in Figure 59, visualised in the MetaEdit+ modelling tool [108], shows

a brief overview of the variation points in the GridStix system, the configuration adopted

in each target system and the triggers causing the DAS to switch between target systems.

The GridStix system uses the GridKit middleware [39], upon which it relies for its

adaptive capabilities. The automated policy generation tool introduced in chapter 5.2 can

derive GridKit policies from a collection of ReAssuRE Level-One strategic rationale

models, and Level Two models, and can be used to do so here. By verifying the generated

policies against those created by hand for the GridStix system, it is possible to confirm that

the policy generation method automated by the tool yields policies are correct.

Page 162

Figure 59: GENIE Model of GridStix DAS Derived from ReAssuRE Models

7.3 Policy Derivation

The policy generation tool was run using the ReAssuRE models presented in Section

7.1, as used for the Genie conversion tool. Figure 60 shows the tool generating the

policies, and Figure 61 shows a small excerpt from the generated adaptation policy. The

full XML policy is included as Appendix B – GridStix Adaptation Policy.

Page 163

Figure 60: Tool Generating Adaptation Policies from ReAssuRE Models

<ReconfigurationRule>
 <FrameWork>SpanningTree</FrameWork>
 <Events><Event>
 <Type>FLOODPREDICTED</Type>
 <Value>TRUE</Value>
 </Event></Events>
 <Reconfiguration>
 <FileType>Java</FileType>
 <Name>Reconfigurations.FewestHop</Name>
 </Reconfiguration>
</ReconfigurationRule>

Figure 61: Snippet of Generated XML Adaptation Policy

7.3 Policy Derivation

This snippet of the adaptation policy contains a single reconfiguration rule, which

specifies that when transitioning to the S3 target system that a fewest hop network

topology should be adopted. The first piece of information in the reconfiguration rule is

the configuration framework to which the reconfiguration applies. For the GridStix

system, all reconfigurations use the “SpanningTree” framework. The Event triggering the

reconfiguration is the setting of the “FLOODPREDICTED” flag to “TRUE”, which the

GridKit middleware implements as an event. The actual code executed to perform the

reconfiguration resides in the “FewestHop” class in the “Reconfigurations” package, the

execution of which is dictated by the policy above.

Upon Inspection of the (full) generated adaptation policy, it is possible to check that

the reconfigurations specified will yield the target system configurations in the ReAssuRE

Level-One Strategic Rationale models. Furthermore, it is also possible to check the

generated adaptation policy against that created by hand for the GridStix system. Both

checks indicate that the generated policy is correct. The behaviour of the GridStix system

under set environmental conditions, using different adaptation policies can be assessed

using simulation. The next section discusses the simulator in more detail.

7.4 Policy Simulation

The GridStix system is deployed in a remote, hostile, environment which makes

performing maintenance difficult. Although the GridStix system can report monitoring

data, there is little possibility of performing tuning based upon it with any degree of

frequency or regularity. Alterations to the GridStix system's adaptive behaviour may have

far-reaching consequences in terms of the system's ability to survive its hostile

environment, or its success in performing its key goal: predicting flooding. Thus, it is

beneficial to simulate candidate adaptation policies before deployment, allowing

developers to assess the performance of the GridStix system under different

configurations, the long-term consequences of a change of policies, to uncover any

emergent behaviour and to allow challenging environmental conditions previously

Page 164

7.4 Policy Simulation

encountered to be studied to better understand how the GridStix system should self-

optimise if they are encountered again.

When creating the GridStix system, developers created a basic simulator capable of

calculating the energy consumed by nodes when communicating different data payloads

using different network topologies, or by using different radio transmission hardware.

This simulator was not in itself sufficient to assess the impact of different adaptation

policies, the need for which was identified when performing maintenance. This thesis

presents an extended version of the simulator, which is able to load adaptation policies

and simulate the behaviour of the GridStix system using the policies when exposed to

various environmental conditions. The behaviour of the environment may also be

scripted, which allows previously encountered environmental conditions to be used to test

candidate adaptation policies. The following paragraphs discuss the simulator's capabilities

individually, in greater detail.

For the thesis's purposes, the most important simulator feature is policy simulation.

This allows adaptation policies to be loaded and interpreted, and configures the simulated

nodes as the policy specifies. Internally, the simulator raises adaptation triggers in much

the same way as the actual system, with events raised when the simulated nodes detect

either a high flow rate or an imminent local flood. Note, that the flood trigger refers to the

site at which the GridStix nodes are situated, not the potential flooding downstream that

the GridStix system seeks to predict. Thus, adaptation policies may dictate target system

configurations for the three identified domains, but not alter the domain partitioning. To

simulate the GridStix system's behaviour if the domain partitioning is adjusted, the

simulator will need to be modified to raise the correct adaptation triggers for the new

partitions.

Another key feature of the simulator is the ability to simulate the nodes' energy usage

when communicating with each other, and performing flow rate analysis. This feature was

present in the original version of the simulator, but is the feature that allows the impact of

configuration changes to be analysed. The energy-usage simulation has been extended to

force nodes that exhaust their battery power to fail, which of course affects the operation

Page 165

7.4 Policy Simulation

of the GridStix system and the performance of the other nodes, thanks to the inherent

change in network topology. Figure 62 shows the simulator's visualisation of the GridStix

nodes, their remaining power, and the currently active network topology.

From an environmental perspective, a key but often overlooked feature is the

simulation of differing light levels. Naturally, the performance of the GridStix nodes' solar

panels is dependent on the amount of sunlight that falls upon them. At night, virtually no

power is supplied by the solar panels, during the daytime the amount of energy generated

is dependent on the amount of cloud cover. The simulator uses three broad light levels to

allow night-time, cloudy and sunny conditions to affect the amount of energy

replenishing the nodes' batteries. These light levels form part of the scripted

environmental conditions that different target system configurations can be subjected to.

Page 166

Figure 62: GridStix Simulator Display

7.4 Policy Simulation

Underpinning the simulator's ability to simulate the GridStix system's adaptive

capability is its ability to specify the behaviour of the river. The depth and flow rate of the

river can be controlled as part of the environmental script, the simulated nodes monitor

them, which in turn prompts the DAS to switch between target systems.

One final feature of the simulator, which is particularly useful for constructing and

simulating what-if? scenarios, is the ability to force nodes to fail due to external (or

unknown) causes. The deployed GridStix nodes operate in an environment that is not only

volatile in terms of its behaviour, but also dangerous to the nodes' hardware. Nodes can

fail due to water-borne debris when the river floods, due to the temperature extremes to

which they are subjected, or even due to bovine intervention. Thus, the ability to

investigate the behaviour of the GridStix system after losing one or more nodes, and to

assess whether different target system designs are better able to tolerate node loss, is

essential.

To conclude, this section presents an enhanced GridStix simulator that allows different

adaptation policies to be trialled under scripted environmental conditions. The simulator

is useful in assessing the impact of changes to the GridStix system's adaptive behaviour,

and in refining target system designs in light of the challenging environmental conditions

the actual system has encountered. The simulator serves also to allow the adaptation

policies derived as part of the requirements validation process described in the following

section to themselves be validated, and likewise for modified target system designs that a

m-DAS may construct under certain scenarios (discussed in Section 7.6).

7.5 Requirements Validation

As discussed in Section 5.3, the ReAssuRE models' explicit capturing of assumptions

using claims supports requirements validation activity, by exploring what-if? scenarios, in

which the behaviour of the DAS is explored when assumptions upon which individual

target system designs are based are broken. This type of validation activity has two

Page 167

7.5 Requirements Validation

benefits: firstly, an assumption in which a low degree of confidence is held is essentially a

marker for uncertainty or incomplete understanding of the environment or the expected

DAS behaviour. Thus, identifying less certain claims eases the identification of these

patchy areas. Secondly, the behaviour of the DAS in adverse conditions can be explored,

which allows any deficiencies to be mitigated by improving the robustness of the

requirements specification. Section 5.3 noted that this thesis does not prescribe the nature

of validation scenarios constructed, highlighting test cases, simulation and static reasoning

as likely candidates to support this validation activity. The GridStix simulator introduced

in the previous section serves as a useful tool in exploring the GridStix system's behaviour

in customisable conditions. This section constructs identified validation scenarios for the

GridStix system as simulator runs.

This section will identify and present the validation scenarios constructed for

GridStix's S3 target system, and will work through the validation scenario pruning method

discussed briefly in Section 5.3, demonstrating the reduction in validation workload that

can be achieved by targeting only the most likely of scenarios.

Referring back to the Level-One Strategic Rationale model for the S3 target system

(Figure 46 on page 146), the S3 target system is specified as using Wi-Fi for radio

communications, a fewest-hop network topology and multi-node image processing to

calculate the river's flow rate. The rationale behind the decisions is recorded in the

associated Claim Refinement Model, which was depicted in Figure 49 on page 149.

Although it would perhaps be most beneficial to construct validation scenarios

covering every combination of supporting claims holding and being invalidated, this thesis

advocates constructing validation scenarios only for combinations of bottom-level claims.

This is a pragmatic decision to keep validation workloads manageable. A bottom-level

claim is usually a composite claim, derived from several underlying claims, and when a

bottom-level claim is invalidated it is usually as a result of one or more supporting claims

having previously been invalidated also. The effects of broken assumptions thus form

clusters, with all the potential combinations of invalidated supporting claims that result in

a bottom-level claim (or combination of bottom-level claims) becoming invalidated

Page 168

7.5 Requirements Validation

having substantially similar effects on the DAS. As such, the focus of the validation work

is the three bottom-level claims in Figure 49.

Section 5.3 stated that the number of required validation scenarios (T) could be

calculated from the number of bottom-level claims (n) using the formula: T=2n-1, with

one being subtracted to exclude the scenario in which all claims hold: the originally

envisaged domain. Thus, for the S3 target system, there are seven possible validation

scenarios, as listed in Table 5 below.

Scenario “Single-Node Not

Accurate Enough for

S3” Claim

“SP too Risky for S3”

Claim

“Bluetooth too Risky

for S3” Claim

1 Holds Holds Invalidated

2 Holds Invalidated Holds

3 Invalidated Holds Holds

4 Holds Invalidated Invalidated

5 Invalidated Holds Invalidated

6 Invalidated Invalidated Holds

7 Invalidated Invalidated Invalidated

Table 5: Claim Combinations for GridStix S3 Validation Scenarios

Although seven validation scenarios do not represent an insurmountable validation

burden, there are also those scenarios for the other target systems to consider. Table 6

below shows the number of validation scenarios required for each of the GridStix target

systems, and in total.

Page 169

7.5 Requirements Validation

Target

System

Required Validation

Scenarios

S1 31

S2 7

S3 7

Total 45

Table 6: GridStix Validation Scenarios by Target System

In Table 6, the number of validation scenarios needed for the S1 target system stands

out as being significantly greater than those for other target systems. This large number of

validation scenarios is because of the style of claim notation used in the Level-One

strategic rationale model for S1, which used several bottom-level claims to convey a more

complex rationale. S2 and S3 use a single inclusive claim to support each individual

decision, which reduces the number of validation scenarios significantly. Thus, there is a

tension between the desire to maximise the precision of the recorded rationale (which

often requires more claims) and the desire to minimise the number of validation scenarios.

Clearly, forty five validation scenarios for what is a relatively simple DAS is

undesirable, and more complex DASs could require significantly more. Thus, the

Page 170

Figure 63: GridStix S3 Claim Refinement Model with Claim Classification

7.5 Requirements Validation

validation scenario pruning method discussed briefly in Section 5.3 shall be used. The

validation scenario pruning method requires claims on the claim refinement model to be

classified according to the level of confidence held in each. Figure 63 shows the claim

refinement model for the S3 target system (as in Figure 49) annotated with the claim

confidence labels assigned.

In Figure 63 there are no unbreakable bottom-level claims, one qualified and two

uncertain. The most important classification decisions occur on the middle level of Figure

63, with “Single-Node [Image Processing] Reduces Accuracy” being classed as qualified,

and the “SP is less Resilient than FH” and “Bluetooth is less Resilient than Wi-Fi” claims

being classed as uncertain.

Single-node image processing reduces prediction accuracy due to the greater time

needed between measurements to allow the processing to be completed on a single node

reduces both timeliness and the amount of data available to the prediction algorithm, and

as such the “Single-Node Reduces Accuracy” claim was considered qualified. The two

uncertain claims were classified as such because the analyst was unsure as to whether the

theoretically more resilient option in each case would prove so demonstrably in the field.

With no unbreakable claims, one qualified and two uncertain, removing unbreakable

bottom-level claims from consideration will yield be no reduction in the required

validation scenarios. If qualified claims are also removed from consideration, three

validation scenarios shall be needed. Table 7 below shows the results of the same working

on each of the GridStix target systems, and in total. The annotated claim refinement

models for S1 and S2 are included as Appendix C – Annotated GridStix Claim Refinement

Models.

Page 171

7.5 Requirements Validation

Target

System

All Claims Excluding

Unbreakable Claims

Excluding Qualified &

Unbreakable Claims

S1 31 7 3

S2 7 3 3

S3 7 7 3

Total 45 17 9

Table 7: GridStix Validation Scenario Reduction using Claim Classification

Table 7 shows that for the GridStix system as a whole, removing unbreakable claims

from consideration when generating validation scenarios will reduce the number of

scenarios needed from 45 to 17. If qualified claims are also excluded, the number of

required scenarios will drop further to 9. Returning to the S3 target system, the three

remaining validation scenarios centre around the claims that Bluetooth communication

and a shortest-path network topology present too much of a risk in terms of fault

tolerance to be used in the S3 target system, with the three key uncertain validation

scenarios covering one, other or both of these claims no longer holding. This section

discusses the two scenarios stemming from a single claim no longer holding in turn.

As discussed at the start of the section, this thesis uses simulation as the means to

construct validation scenarios. To simulate the expected environmental conditions for the

S3 target system, a combination of meteorological and logged data from the actual system

in operation was used to construct a simulator environment script of a fairly typical flood

event from start to finish.

The simulated conditions start from a period of relatively good whether, which means

that the GridStix nodes start the simulation with close to full batteries. Then, a period of

heavy rainfall occurs, lasting approximately 72 hours. During this time, the poor lighting

conditions mean that the GridStix nodes' solar panels perform poorly. During this time,

the river's flow rate steadily increases, as rainfall upstream flows past the site. After the 72

hours elapse, the conditions do not improve, but the river depth starts to rise, which

Page 172

7.5 Requirements Validation

causes the GridStix system to adopt the S3 target system configuration. After

approximately 36 hours of the river's depth slowly increasing, GridStix nodes begin to

become submerged, and two nodes soon fail. (In the real-life scenario reflected by these

conditions, one failed due to flawed waterproofing and the second due to debris damage).

The weather eventually improves, and the river's depth peaks before all the nodes become

submerged, and as the flood subsides the GridStix system adopts the S2 target system

configuration.

The two validation scenarios consist of a simulator run using the described

environmental conditions, the first run simulating poorer than expected Wi-Fi

performance by reducing the achievable communications range to little above that

achieved by Bluetooth (essentially invalidating the “Bluetooth is Less Resilient than Wi-

Fi” claim in Figure 63.

This first simulator run indicated that although the GridStix system was able to survive

long enough to predict a flood and adapt to S3, the node failures occurring soon after the

flood event begins caused two nodes (G and J in Figure 62 on page 166) to drain their

battery power significantly faster than the other nodes, thanks to the increased

communications traffic flowing between them after nearby nodes had failed. Although the

simulated flood event subsides before the nodes exhaust their battery power, the results

indicate that longer floods would see these nodes fail in similar circumstances. Given that

the invalidated bottom-level claim under study supports selecting Wi-Fi over Bluetooth, a

second simulator run was conducted with Bluetooth used for communications instead.

These results indicated that the GridStix system would survive for two to three days

longer in these conditions using Bluetooth. However, if node G or J were to fail during the

flood event, the network would become fragmented. Thus, the results of the validation

scenario are that the consequences of the “Bluetooth too Risky for S3” claim not holding

are not catastrophic, which means that additional effort should not be expended in

verifying the supporting claims.

The second simulator run aimed to assess the performance of the GridStix system

should a fewest hop network topology prove no more resilient than shortest path. This

Page 173

7.5 Requirements Validation

was achieved by changing the S3 network topology to shortest path (so in this run, the

fewest hop topology is exactly as resilient as shortest path) and applying an additional

power drain so that the nodes were consuming power as if communicating by fewest hop,

whilst receiving only the fault tolerance level of shortest path. This simulation is

imperfect because the distribution of power consumption between nodes would differ in a

fewest-hop topology. The simulation results included several node failures due to battery

exhaustion, eventually fragmenting the network. As such, the validation scenario

indicates that the consequences of the “SP too risky for S3” claim are potentially serious,

and that some validation activity should be undertaken to ensure that the supporting

claims are sound.

This second scenario was challenging to construct and visibly imperfect, it should also

be noted that a simulator run designed to validate the claim would actually have been

simpler in this instance. As such, this thesis recommends that care be taken when

constructing validation scenarios; in cases where effort can better be expended in

validating the assumptions codified by claims it is better to do this than expend effort

exploring the consequences of the claim not holding.

The outcomes of the two validation scenarios are relatively clear: the consequences of

the “Bluetooth too Risky for S3” claim being invalidated are not severe, whereas the

consequences of the “SP too Risky for S3” claim are. Thus, validation effort should be

expended on validating the latter by validating its supporting claims.

To conclude, this section demonstrates how validation scenarios may be identified and

constructed for a target system by analysis of Level-One claim refinement models. It has

highlighted the explosive increase in validation burden as the number of bottom-level

claims in ReAssuRE models increases, and identified a tension between the desire to

maximise the precision of recorded rationale and the desire to minimise validation

workload. In mitigation, the section demonstrates the significant reduction in the number

of validation scenarios that can be achieved by excluding claims in which a greater degree

of confidence is held, targeting validation effort at the more uncertain claims.

Page 174

7.5 Requirements Validation

The systematic identification of areas of uncertainty within a DAS specification was

considered useful by GridStix's developers, particularly in conjunction with the previously

discussed possibility of uncovering implicit assumptions when first constructing the Claim

Refinement Models. The system developers felt, however, that the number of validation

scenarios required to cover all combinations of broken and held assumptions was

burdensome, and as such the simple method of prioritising key scenarios was welcome.

The section shows also that validation scenarios can be difficult to construct for a given

combination of claims holding or otherwise, and that in some cases it may be beneficial to

assume the outcome of a validation scenario indicating a need for claim validation when

said validation can be performed more easily and effectively.

7.6 Model-Driven Adaptation

Chapter 6 discusses the use of ReAssuRE models at run time to guide a DAS's

adaptation. This thesis proposes the monitoring of assumptions in a manner analogous to

requirements monitoring [30], modifying Level-One Claim Refinement Models to reflect

operating conditions when assumptions are found to no longer hold by invalidating the

claims representing broken assumptions, and re-deriving adaptation policies from the

changed models to yield new adaptive behaviour. This section demonstrates the model

modifier discussed in Section 6.3, and shows that, in some circumstances, a m-DAS

version of the GridStix system can adapt to and is better equipped to tolerate unforeseen

environmental conditions.

In devising a m-DAS using assumption monitoring, the first step to be taken is the

identification of assumptions for which monitors can be devised. Returning to the claim

refinement model for GridStix's S3 target system, depicted in Figure 49 on page 149, there

are nine claims in total. However, not all of these claims prove monitorable.

Of the claims in Figure 49, just five are directly monitorable, and monitoring one of

the five would be needless. The “River about to flood in D3” claim is, of course, already

Page 175

7.6 Model-Driven Adaptation

monitored by the DAS to allow transitioning out from the S3 target system. As such, the

claim is treated as un-monitorable. The four remaining monitorable claims are: “Single-

Node [Image Processing] Reduces Accuracy”, “SP is less Resilient than FH”, “Faults Likely

in S3” and “Bluetooth is less Resilient than Wi-Fi”.

Monitoring the “Single-Node [Image Processing] Reduces Accuracy” claim would be a

matter of maintaining a record of the percentage of predicted floods that occur, or the

percentage of actual floods not predicted whilst using multi-node and single-node image

processing. In the event of the two percentages converging, or even the single-node

prediction accuracy being found higher, the claim could be invalidated.

Monitoring of the “SP is less Resilient than FH” claim would take the form of

recording the number of GridStix nodes that need to fail before any remaining functional

nodes become separated from the main network, unable to communicate. Given that

network partitions impact the ability of the GridStix system to predict floods, the GridStix

system is designed to minimise this occurrence. Thus, it is expected that if at all, this

assumption would only be invalidated over time. Monitoring of the “Bluetooth is less

Resilient than Wi-Fi” claim can be similarly achieved.

Monitoring the “Faults Likely in S3” claim is relatively trivial, and can be achieved by

recording the number of node failures in S3, and comparing the number with those for

other target systems.

This thesis does not prescribe the form of assumption monitors, much as the main

body of requirements monitoring work does not prescribe the form of requirement

monitors [30] [92]. The potential monitors discussed above are included merely to

illustrate the level of detail that needs to be considered when classifying claims as

monitorable or otherwise. The model modifier discussed in Section 6.3 adjusts Claim

Refinement Models in response to events raised by monitors, propagating a “Broken” label

throughout the model. Should a bottom-level claim be invalidated either directly by a

monitoring event or indirectly via label propagation, the associated Strategic Rationale

model is modified in accordance with a monitoring policy. Figure 64 depicts a portion of

Page 176

7.6 Model-Driven Adaptation

the monitoring policy for the GridStix S3 target system, covering the monitors and

modification for two of the four identified monitored claims.

Each of the monitor rules in Figure 64 stipulate that on receipt of the appropriate

event (the event objects are packaged in the “gridstixsupport” class), a specific claim on the

Claim Refinement Model should be invalidated. If the “Broken” label reaches a bottom-

level claim as a result of this model modification, the model modifier should invert the

Page 177

<MonitoringPolicy>
 <MonitorRule>
 <Monitor>
 <Event>gridstixsupport.S3BTLessResWifiEvent</Event>
 </Monitor>
 <Transformation>
 <Node type="claim">
 Bluetooth is less resilient than Wifi
 </Node>
 <Action>INVERT</Action>
 </Transformation>
 </MonitorRule>
 <MonitorRule>
 <Monitor>
 <Event>gridstixsupport.S3NoFaultsEvent</Event>
 </Monitor>
 <Transformation>
 <Node type="claim">
 Faults Likely in S3
 </Node>
 <Action>INVERT</Action>
 </Transformation>
 </MonitorRule>
</MonitoringPolicy>

Figure 64: Snippet of GridStix Monitoring Policy

7.6 Model-Driven Adaptation

contribution of the bottom-level claim on the Strategic Rationale model. Figure 65 and

Figure 66 depict the Level-One Claim Refinement and Strategic Rationale models

respectively, after the model modifier has acted on receipt of a “S3BTLessResWifiEvent”,

which would be raised by the assumption monitor covering the “Bluetooth is Less

Resilient than Wi-Fi” claim.

Page 178

Figure 65: Modified GridStix S3 Claim Refinement Model

7.6 Model-Driven Adaptation

Figure 65 shows the “Broken” label having been applied to the “Bluetooth is less

resilient than Wi-Fi” claim, from where it propagated to the “Bluetooth too risky for S3”

bottom-level claim. Figure 66 shows that the now invalidated bottom-level claim's

contribution to the strategic rationale model has been inverted: a “Break” contribution as

opposed to a “Make” on the original model. The inverted contribution means the claim

now supports the selection of Bluetooth instead of Wi-Fi in the original S3 model. In short,

these model modifications would mean that if an assumption monitor determined that

under current conditions, Wi-Fi radio communications were proving no more resilient

than Bluetooth, the m-DAS would adjust the S3 target system design temporarily to use

Bluetooth, saving power.

Using the model modifier with the monitoring policy depicted in Figure 64, it is

possible for a m-DAS to produce the modified models depicted in Figure 65 and Figure 66

Page 179

Figure 66: Modified GridStix S3 Strategic Rationale Model

7.6 Model-Driven Adaptation

autonomously. Using the policy generation method discussed in Section 5.2, the m-DAS

may re-derive updated adaptation policies to reflect the new configuration supported by

the modified models. Running the new adaptation policies in the simulator scenario

discussed in the previous section, in which Wi-Fi significantly under-performs, indicates

that the GridStix nodes would survive longer in this configuration under the simulated

conditions, due to the lower power usage.

In the second example, Figure 67 and Figure 68 show the S3 Claim Refinement and

Strategic Rationale models, respectively, after the model modifier has acted on receipt of a

“S3NoFaultsEvent”, which would be raised by an assumption monitor covering the “Faults

Likely In S3” claim.

Page 180

Figure 67: More Extensively Modified GridStix S3 Claim Refinement Model

7.6 Model-Driven Adaptation

As with the previous example, Figure 67 shows the “Broken” label having been applied

to the “Faults Likely in S3” claim, and in this case having propagated to two bottom-level

claims: “SP too Risky for S3” and “Bluetooth too Risky for S3”. Figure 68 shows that the

two bottom-level claims' contributions to the Strategic Rationale model have been

inverted, significantly adjusting the specification for the S3 target system to use less power

given the reduced threat of node failure. Unsurprisingly, a simulator scenario in which

there are few or no node failures whilst S3 is active, indicates that the less fault tolerant yet

more energy efficient configuration reached after model modification is preferable.

To conclude, this section has demonstrated how the model transformer presented in

Section 6.3 could modify the models of a larger DAS at run time in response to events

raised by assumption monitors. The availability of a GridStix simulator has allowed the

section to verify that the model modifications and resultant changes to target system

Page 181

Figure 68: More Extensively Modified GridStix S3 Strategic Rationale Model

7.6 Model-Driven Adaptation

specifications are indeed beneficial under the circumstances under which they would

occur. This ability to depart from the original system specification in response to

unexpected operating conditions represents a step forward in the state of the art with

respect to DASs, with previous DASs possessing only an ability to select between explicitly

pre-specified configurations, which are of course dependent on developers having

predicted operating conditions accurately.

It is debatable whether a m-DAS capable of adopting a finite number of configurations

not codified as target system designs is truly devising a new configuration. Likewise, the

act of identifying and modelling assumptions, and monitoring them could be considered to

be affording some consideration to a set of circumstances a m-DAS may encounter outside

of the originally envisaged domain, particularly if those conditions are then tested.

However, a GridStix m-DAS as discussed in this section would certainly have a wider

operational envelope than its (non model-driven) DAS counterpart, and would certainly

be less tied to rigid domain partitioning than the original system. Thus, a suitably

constructed m-DAS offers an opportunity to create a less brittle autonomous system.

Of course, granting a system any degree of autonomy removes a proportionate degree

of assurance over its behaviour. A standard DAS (non m-DAS) guarantees that it will

always be in one of a set number of pre-specified configurations, - even if there is a risk of

the DAS being in an undesirable configuration under some circumstances. A m-DAS,

however, offers no such guarantee in that one or more of the configurations may have

been modified in response to monitoring data. Thus, the issue of validating m-DAS

behaviour becomes increasingly important. The next section discusses how the possibility

of emergent behaviour as a result of modification can be explored and mitigated.

7.7 Testing for Emergent Behaviour

The limited ability of a m-DAS to tailor its operation to operating conditions outside of

those envisaged by developers presents an opportunity to develop systems able to operate

Page 182

7.7 Testing for Emergent Behaviour

in more volatile, or less well understood environments than even standard DASs.

However, granting this additional autonomy removes the ability of the developer to be

completely sure of the system's behaviour under all operating contexts. For systems

requiring a good degree of assurance, this combination of environmental and behavioural

uncertainty proves problematic.

Section 7.6 demonstrates that a version of the GridStix DAS retrofitted with model-

driven adaptive capability would be better equipped to operate in contexts in which the

assumptions underpinning its design no longer hold. However, in circumstances where

the m-DAS has adjusted its behaviour outside the original specification, it is very difficult

to offer assurance that the m-DAS's behaviour will be appropriate, yet alone correct or

optimal.

Two potential solutions that may offer a good degree of assurance without sacrificing a

m-DASs flexibility is to use human monitoring, or human-in-the-loop adaptation (or at

the very least human in-the-loop model modification). Unfortunately, the GridStix system

operates in a remote location and communicates over a low bandwidth cellular link. Thus,

a human in the loop would be infeasible, and the amount and detail of monitoring data

that can be transmitted. coupled with the inherent delay in burst-mode transmission,

would render monitoring ineffectual. Thus, the GridStix developers must rely on testing

to deliver assurance.

The GridStix system is something of a borderline case with regards to classification as a

safety-critical system. The environment agency and the met. office have other

mechanisms in place to predict and warn of floods, meaning that life and limb are not

directly or exclusively reliant on the system. However, it is trivial to imagine a scenario in

which a failure of the GridStix system to deliver a timely flood warning would negatively

impact the ability of those affected to evacuate and escape the rising water. Regardless of

whether the GridStix system may be formally classified as safety-critical, it is clear that

the developers would like to maximise the degree of assurance offered.

Page 183

7.7 Testing for Emergent Behaviour

Although the GridStix system's individual components, the specified target systems

and the GridStix system's adaptive behaviour all need to be tested, the testing required by

a standard DAS is assumed. The section focusses instead on the additional testing required

to uncover emergent behaviour in the m-DAS as a result of model modification. As

discussed in Section 6.4, testing for emergent behaviour as a result of model modification

involves devising test cases for all combinations of held and broken bottom-level claims,

in much the same way as validation scenarios are devised. Thus, as with the validation

scenarios in Section 7.5, the Level-One Claim Refinement Model for GridStix's S3 target

system (depicted in Figure 49 on page 149) is analysed.

The three bottom level claims depicted in Figure 49 would yield seven combinations

for which testing scenarios need be devised. A table of the individual combinations was

presented as Table 5 on page 169 for reference. As with the validation scenarios, the

explosive increase in required test cases as the number of bottom-level claims rises means

that some way of prioritising the most likely to be encountered test cases is beneficial, and

claim refinement models are again annotated with confidence labels.

However, when dealing with m-DAS test cases, the meaning of the “Unbreakable”

label is changed. Previously, when dealing with validation scenarios, the “Unbreakable”

has been lent to claims in which full confidence is held. For m-DAS test cases,

“Unbreakable” label refers to the m-DAS having no means to monitor the claim. Thus,

only claims which are unmonitorable (or merely un-monitored) and cannot be invalidated

through propagation are labelled “Unbreakable”. Monitored claims, even if axiomatic, are

classified either as “Qualified” or “Uncertain”, depending on the degree of confidence

held. In borderline cases, the risk of claim falsification may be considered, with claims

supporting large branches of the model classified “Uncertain”.

Figure 69 depicts the Claim Refinement Model for the S3 target system with

confidence labels for test case consideration. Claims the m-DAS can monitor directly are

labelled “Monitorable”, and have a certainty label applied. The certainty labels are

propagated throughout the model, and the remaining claims labelled as “Unbreakable”.

Page 184

7.7 Testing for Emergent Behaviour

The annotations in the model depicted in Figure 69 differ slightly from those in the

model depicted in Figure 63 on page 170, as a result of the difference in criteria for

labelling claims “Unbreakable”. In Figure 63, the “Faults Likely in S3” claim was labelled

“Unbreakable”, given that a flooding river is certain to render GridStix nodes inoperable

whilst submerged, and the additional risk of causing node damage either through water

damage or due to debris. In Figure 69, however, the m-DAS's ability to monitor the

number of faults encountered whilst the S3 target system is active means that the claim is

labelled “Qualified”.

To devise testing scenarios to uncover emergent behaviour as a result of a m-DAS

performing model modification, it is necessary to provide testing coverage for all

combinations of invalidated bottom-level claims, in a manner similar to the way

identification of validation scenarios was carried out for the system in Section 7.5. When

creating validation scenarios, ideally all combinations would be considered, with

unbreakable and, if necessary, qualified claims excluded solely to reduce validation

burden. However, when devising testing scenarios, unbreakable claims can safely be

omitted in all cases, given that the m-DAS has no ability to monitor and thus invalidate

unbreakable claims. Thus, to offer complete testing coverage of the results of model

modification, it is necessary to devise test cases covering all combinations of qualified and

uncertain bottom level claims being invalidated or holding.

Page 185

Figure 69: GridStix S3 Claim Refinement Model with Testing Claim Classification

7.7 Testing for Emergent Behaviour

The number of test cases required can be calculated in the same way as the number of

validation scenarios required for a given number of bottom-level claims was calculated.

The number of test cases (T) can be found from the number of bottom-level claims (n)

using the formula: T=2n-1. One is subtracted here, because the combination of claims in

which all hold is the original target system design, without any model modification having

occurred. Thus, seven testing scenarios are needed to explore the S3 target system for

possible emergent behaviour as a result of model modification. In cases in which providing

testing coverage for all combinations of claims is too burdensome, it is possible to exclude

the bottom-level claims classed as qualified, at the expense of it being possible for the m-

DAS to adopt a completely untested configuration in some circumstances. This exclusion

also introduces the risk of inaccuracy in claim classification: a bottom-level claim classed

as qualified (either directly or using propagation) that is later invalidated would mean that

the m-DAS may adopt an untested configuration, when a more cautious categorisation

would have meant the configuration was tested.

Table 8 below depicts the number of testing scenarios required by all of the GridStix

target systems, testing either all combinations of qualified and uncertain bottom-level

claims, or just combinations of uncertain bottom-level claims. The “All Claims” column is

included to illustrate the benefit of adjusting the criteria for “Unbreakable” claim

classification, as without this adjustment, they too would need to be considered when

devising test cases.

Target

System

All Claims Excluding

Unbreakable Claims

Excluding Qualified &

Unbreakable Claims

S1 31 7 0

S2 7 3 1

S3 7 7 3

Total 45 17 4

Table 8: GridStix Test Case Reduction using Claim Classification

Page 186

7.7 Testing for Emergent Behaviour

Table 8 shows that excluding qualified claims from test case generation offers a

significant reduction in testing burden, whilst still testing the configurations adopted in

cases where the riskier claims are invalidated. Focussing testing effort on the model

modifications most likely allows limited testing resources to be directed appropriately,

albeit risking the possibility of a m-DAS adopting an untested configuration. Even

uncertain claims are expected to hold, as assumptions are expected to be validated as

understanding of the environment and system components improves, which means that

some may find this risk acceptable. Devising test cases to cover all combinations of

qualified and uncertain claims, however, allows a m-DAS's additional adaptive capability

to be fully tested.

The differences between the figures presented in Table 8 and those in Table 7 on page

172 are again due to the change in criteria governing the classification of claims as

“Unbreakable”.

To conclude, this section uses a detailed case study to illustrate how test cases designed

to uncover emergent behaviour as a result of model modification can be constructed for a

m-DAS. The section highlights the differences between the claim classification used in

requirements validation and testing, and shown how this adjustment reduces the number

of test cases required. The section demonstrates how this number can be further reduced

by excluding qualified claims from consideration, but has discussed the risk inherent in

doing so.

As discussed in the previous section, the act of performing testing to verify a m-DAS's

behaviour after all potential model modifications means that a key m-DAS's benefit:

tailoring behaviour to unforeseen operating conditions, is removed. If the m-DAS has

been tested under a set of conditions, just how unforeseen can they actually be? Of course,

if testing scenarios are omitted, for example after using the test case reduction method

discussed in this section, there are still some sets of conditions under which the m-DAS's

behaviour is less certain. However, the GridStix m-DAS certainly offers a wider

operational envelope than the original system, and this section demonstrates

circumstances in which this could prove beneficial.

Page 187

7.8 Chapter Conclusion

7.8 Chapter Conclusion

The chapter demonstrates the production and use of ReAssuRE models for a

substantial, real life DAS. The case study confirms it possible to capture real-life rationale,

which may be nuanced or contradictory and overlapping several related decisions, using

claims. Furthermore, the case study shows that relatively complex, balanced, real-life

rationale can, once captured, be used to better manage change; which may affect a DAS's

specification due to actual changes in the environment or goals, or as understanding of the

originally envisaged environment and DAS improves.

 The availability of a GridStix simulator, allowing the performance of the GridStix

system with different adaptation policies to be assessed under controlled environmental

conditions, serves as an asset in validating the outcomes requirements changes effected

using traceability information from ReAssuRE models. Given that the discussed

requirement changes were scenario based, the ability to verify that configuration changes

arrived at, and potentially steered towards by ReAssuRE models are indeed beneficial in

the scenario detailed means that this chapter has demonstrated the effectiveness of a

change process using tracing information from the models.

The case study allows the adaptation policy derivation method, and associated

generation tool discussed in Section 5.2 to be validated by comparing the policies created

by the tool with those originally created by hand for the DAS during development.

Verifying this ability is important, given the reliance of the m-DAS architecture discussed

in Section 6.3 on the policy derivation method, which is used to derive new target system

configurations after model modification.

The case study offers significant insight into the utility of ReAssuRE models in

identifying areas of uncertainty in a DAS's specification, and in devising ways in which

the consequences of the uncertainty on the DAS's operation can be explored using

validation scenarios. The case study identifies a limitation in the usefulness of validation

scenarios, after it was noted that in some circumstances, it is easier to undertake effort on

Page 188

7.8 Chapter Conclusion

validating an assumption codified in a claim than it is to explore the behaviour of the DAS

should the assumption prove erroneous.

The case study's exploration of the potential benefits of granting the GridStix system

more autonomy over its operation by converting it to a m-DAS moves beyond the

capability implemented in the deployed system. However, the case study allows both the

utility and potential risk of allowing a system to devise its own configurations in limited

circumstances outside those envisaged at design time to be assessed.

The case study allows the m-DAS emergent behaviour test-case identification method

discussed in Section 6.4 to be examined, with the potentially burdensome amount of

required testing emerging as a significant obstacle. In mitigation, the test case reduction

method also discussed in Section 6.4 is shown to offer a significant reduction in this

burden by discarding unnecessary test-cases, and an even larger reduction possible if the

level of assurance required is dropped, and the risk of claim mis-classification acceptable.

Page 189

8 Conclusions and Future Work

8 Conclusions and Future Work

This thesis examines the use of rich tracing information in requirements models for

dynamically adaptive systems. Such tracing information can be used to manage change,

which this thesis has argued will be prevalent given the uncertain, volatile and often

novel nature of DASs and their operating environments. This thesis has also demonstrated

how the captured tracing information can be used to identify areas of uncertainty in

understanding of the environment or expected system behaviour, with a view to either

reducing or mitigating the uncertainty.

This thesis also demonstrates how the same tracing information could be used by a

DAS itself at run time, to better adapt to unforeseen operating conditions. This run-time

use of tracing information captured in design-time requirements models is not only a

novel concept, but offers the potential to create DASs with a greater degree of autonomy

than currently possible.

This chapter starts by returning to the research questions posed at the beginning of the

thesis, in Section 1.3. The answers to the questions which have emerged throughout the

thesis are presented and discussed. The chapter then revisits the research hypothesis,

presented in Section 1.4, examining the results of the case study presented in Chapter 7 to

see whether they support the original hypothesis. The chapter then discusses the

limitations of the research, before moving on to discuss the possible future work opened

up by the research. Finally, the chapter offers some closing remarks, drawing the thesis to

a close.

8.1 Research Questions Revisited

This section revisits the research questions presented in Section 1.3, and discusses the

answers to each, in turn, that have emerged throughout the thesis.

Page 190

8.1 Research Questions Revisited

The first research question is:

To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

Section 5.2 presents and discusses an adaptation policy generator, capable of deriving

adaptation policies compatible with the GridKit [39] middleware from ReAssuRE models.

Adaptation policies, as discussed in Section 2.4.1, prescribe the adaptive behaviour of

DASs built using policy-driven adaptive middleware. ReAssuRE Level-One Strategic

Rationale and Level Two models codify the results of environmental analysis undertaken

during the RE process and the outcome of decisions based upon this analysis. Thus, the

ability of the policy generation tool to derive adaptation policies controlling DAS adaptive

behaviour indicates that the answer to this question is “entirely”.

Section 5.2 also presents a similar tool capable of generating specifications of DAS

adaptive behaviour in the Genie Domain Specific Language (DSL) [107]. This tool allows

other adaptive infrastructures, using incompatible policy formats, to use adaptive

behaviour specifications derived from ReAssuRE models. This ability to generate

middleware-independent adaptive behaviour serves to prove the generality of the adaptive

behaviour derivation approach, lending additional credence to the claim that DAS

adaptive behaviour is a mere derivation of environmental analysis and configuration

decisions taken during the RE process.

The second research question is:

Can the information from the environmental analysis and configuration decisions

be codified in models, and is it useful to do so?

It could be argued that the existing LoREM process [16], upon which ReAssuRE is

based, had an existing ability to record configuration decisions, which are a result of

environmental analysis. However, Section 4.2 demonstrates that this ability is limited in

that the rationale behind the decisions, also a result of environmental analysis, remains

implicit. ReAssuRE models use claims to record the rationale behind configuration

Page 191

8.1 Research Questions Revisited

decisions, along with the alternatives considered, meaning that more of the information

discussed in this research question is codified in ReAssuRE models. Sections 5.1.2 and 7.2

demonstrate the utility of this additional information, codified in model form, in

performing model evolution. Sections 5.3 and 7.5 demonstrate the utility of this same

information in performing requirements validation. Sections 6 and 7.6 demonstrate how

the information could be used in model form by DASs at run time to adapt to unforeseen

operating conditions. Thus, this research question can be answered positively.

The third research question is:

Given that both the information from the environmental analysis and the

configuration decisions are subject to change, how can the workload of deriving a

DAS's adaptive behaviour be reduced?

As discussed in answering the second research question, Sections 5.1.2 and 7.2

demonstrate how the improved traceability of ReAssuRE models enhance changeability.

Improving the changeability of the requirements models from which a DAS's adaptive

behaviour is derived can help to reduce the workload induced by a change. As for the

workload involved in performing adaptive behaviour derivation specifically, Section 5.2

presents two tools capable of deriving adaptation policies or Genie DSL adaptive

behaviour specifications, respectively. These tools can all but eliminate the workload

associated with re-deriving DAS adaptive behaviour after models have been changed.

The fourth research question is:

How can a system be designed with a greater degree of autonomy than current

state-of-the-art DASs, and is the extra autonomy useful?

Chapter 6 discusses how a Model-driven Dynamically Adaptive System (m-DAS) could

be constructed using ReAssuRE models and assumption monitoring. Such a system would

have the ability to adopt configurations not explicitly specified at design time when faced

with one or more modelled assumptions that no longer hold. Section 7.6 demonstrates

Page 192

8.1 Research Questions Revisited

how this extra autonomy could prove useful should the understanding upon which

individual target system designs were based prove to be incorrect at run time.

The fifth and final research question is:

How can the testing workload be managed in systems with greater autonomy?

The answer to this final research question is less conclusive. Sections 6.4 and 7.7

demonstrated a method by which limited testing resources could be directed to the most

likely of testing scenarios that have the potential to uncover emergent behaviour.

However, the degree of assurance it is possible to afford to a system capable of adopting

unexpected and untested configurations will inevitably be reduced. Other means of

delivering assurance such as monitoring or human-in-the-loop adaptation, or human-in-

the-loop model evolution, may prove a more acceptable solution.

8.2 Research Hypothesis Revisited

This section revisits the research hypothesis presented in Section 1.4, which is

repeated below:

When performing early-phase RE for a Dynamically Adaptive System, the

recording of additional tracing information will better support change later in the

software engineering process. Recorded tracing information can be used during

development to derive the adaptive behaviour of a DAS (the concern of switching

from one configuration to another as the environment changes), and by the DAS

itself after deployment to better adapt to unforeseen conditions.

The first component of the hypothesis concerns DAS requirements change. This thesis

has demonstrated how recording additional tracing information better supports this

change, with case study examples presented in Sections 5.1.2 and 7.2. As discussed in

Section 5.1.1, some classes of DAS requirements change are indeterminate in their tracing

requirements. Therefore, it is of course impossible to determine that all change is better

Page 193

8.2 Research Hypothesis Revisited

supported by ReAssuRE models' additional tracing information. However, this thesis

demonstrates that some changes are better supported by the recording of additional

traceability information, demonstrating the approach's utility.

The second component of the hypothesis concerns the use of tracing information

codified in ReAssuRE models to derive DAS adaptive behaviour. Sections 5.2 and 7.3 of

this thesis demonstrates an ability to derive adaptation policies directly or to derive

adaptive behaviour specified in an appropriate Domain Specific Language in Sections 5.2

and 7.3. Thus, this clause of the hypothesis is supported by the research presented in this

thesis.

The final clause of the hypothesis concerns the use of tracing information codified in

ReAssuRE models to guide DAS adaptation at run time. This thesis demonstrates a method

by which a new type of DAS, a m-DAS, which uses design-time requirements models to

guide run-time adaptation. Section 6.3 presents an architecture by which a m-DAS may be

constructed using ReAssuRE models and assumption monitoring techniques. Section 6.3

also presented a proof-of-concept model transformer component that demonstrates the

viability of such a system. The ability of a m-DAS using the described architecture and the

proof of concept model transformer to better adapt to unforeseen conditions is

demonstrated in Section 7.6. Thus, this clause of the hypothesis is supported by the

research presented in this thesis.

Section 1.4 describes the method used to conduct the research presented in this thesis.

The wide and varied nature of the Software Engineering discipline hinders the emergence

of a single accepted research method [12]. The synthetic nature of this thesis's more

specific field: requirements modelling, lends the use of case studies as an appropriate

validation tool. Chapter 7 makes use of simulation to more objectively validate this thesis's

claimed benefits within the more detailed case study. The outcomes of the two case

studies, taken complete with the simulator results where appropriate, lead to an overall

conclusion that the hypothesis is substantially supported.

Page 194

8.3 Limitations

8.3 Limitations

This section highlights the limitations of the research, along with some reflective

discussion of the limitations and possible mitigation.

Perhaps the most significant limitation of the work is the requirement for an operating

environment to be partitioned into distinct domains. This requirement was inherited from

the LoREM method upon which ReAssuRE is based [16], and in turn the original RE

perspectives defined in [10]. Although this thesis is clear that ReAssuRE's applicability

extends only to systems whose operating environments may be partitioned, there exists no

research defining whether all, some, or few proposed DAS environments meet this

criterion. One potential avenue of future research lies in the analysis of proposed or

implemented DASs to establish the proportion of DAS operating environments for which

approaches requiring domain partitioning would be appropriate.

Another important limitation is inherited from the i* modelling ontology itself [71].

The complexity of i* models as scale increases is a known concern [104] [105] [106], and

although i* modelling tools feature conditional display tools allowing modellers to work at

varying degrees of abstraction [84] [73], the problem remains largely unsolved. Thus,

ReAssuRE models which require additional model elements to record rationale, are

subject to the problem to an even greater degree.

The separation of Claim Refinement Models from Strategic Rationale at Level One

limits the additional model elements on Strategic Rationale models to bottom-level claims.

However, some would argue that the two Level-One models should be combined,

removing the duplication of bottom-level claims between the two. Although possible, the

significant number of additional model elements placed on the Strategic Rationale model;

already acknowledged to suffer from clutter, means that this approach is rejected.

Section 4.2.1 discusses the trade off that can be made between the maximisation of the

detail and precision of recorded rationale versus the minimisation of the number of claims

required to record it. The decision taken by the modeller on the balance struck between

Page 195

8.3 Limitations

these competing objectives has a clear impact on the complexity of the completed

ReAssuRE models. Thus, the ReAssuRE method possesses a degree of flexibility which can

be leveraged to manage the problem of model complexity.

In much the same way as there is a tension between the precision of recorded rationale

and the complexity of the model in which it is recorded, there is also a tension between

the number of alternatives to consider and model versus the complexity of the model in

which they are recorded. This thesis does not prescribe a set number of alternatives to

consider for a given decision, and as mentioned for the precision of rationale, the

ReAssuRE method possesses a degree of flexibility in that it does not depend on a specific

number of alternatives having been considered. It should be noted, however, that neither

case study in the thesis had a large number of alternatives for a single decision. Thus the

value of the tracing information recorded has not been compared to the modelling effort

required to record more than a handful of alternatives for a single decision.

As mentioned briefly in Section 8.2, and discussed more completely in Section 5.1.1,

the indeterminate requirements of some classes of DAS requirements change prevents a

requirements modelling method from claiming complete support for all requirements

changes. This limitation appears insurmountable, and would be shared by any competing

approach. However, Sections 5.1.2 and 7.2 demonstrate that ReAssuRE models support the

tracing needs to efficiently support several classes of change a DAS's requirements may be

subjected to.

The burden of requirements validation when devising systems to operate in uncertain,

volatile environments is always going to be significant. The validation scenario reduction

method presented in Section 5.3 allows redundant validation activity to be identified and

omitted, and allows the amount of remaining validation activity to be prioritised.

However, this method mitigates rather than overcomes the validation burden. Likewise,

the m-DAS emergent behaviour test case reduction method discussed in Section 6.4 offers

only a potential reduction in testing burden in exchange for a reduction in delivered

assurance. This thesis, however, identifies other means of delivering m-DAS assurance

which may prove more appropriate in some cases.

Page 196

8.3 Limitations

There is a final limitation that lies within the research method used. The use of a case

study is insufficient to prove a hypothesis, merely to demonstrate that it holds in some

circumstances. Thus, the use of a case study to validate the research presents a threat to

validity in terms of generality. Typically, methods are best proved beneficial by empirical

research over time. Unfortunately, the immature nature of DASs as a class of system

means that there is little opportunity to conduct such empirical research. Thus, although

this thesis can conclude that the research presented supports its stated hypothesis, no

stronger conclusion can accurately be reached.

8.4 Future Work

In addition to supporting or disproving the thesis's hypothesis. The research presented

in this thesis allows new, previously unidentified areas of research to emerge. Such

research would either enhance the support of this thesis's hypothesis or allow the research

to be further extended delivering greater or wider benefit. This section details several of

the identified areas in which future research would be beneficial.

The most promising avenues of future research stem from the Model-driven

Dynamically Adaptive Systems (m-DASs) discussed in Chapter 6 and demonstrated in

Section 7.6. a m-DAS possesses a limited ability to tailor its operation to conditions outside

those envisaged a priori, which is a novel capability. The m-DAS architecture presented in

Section 6.3 uses ReAssuRE models and assumption monitoring, which is in itself a novel

re-purposing of requirements monitoring [30] [95] techniques.

There is currently significant research interest in the use of requirements models at

run time [112] or some other representation of system requirements [97]. Furthermore,

the potential, and consequences, of a system capable of tailoring its operation to conditions

not envisaged at design time, using any means, is relatively unexplored. The construction

of a m-DAS using the architecture detailed in Section 6.3 would allow research in these

areas to be conducted effectively.

Page 197

8.4 Future Work

Although this thesis demonstrates a proof of concept for a m-DAS constructed using

ReAssuRE models as run-time representations of DAS requirements and using assumption

monitoring to drive model transformation, it may be possible to construct a m-DAS using

other means. Other run-time requirements representations, or other means of performing

model transformation may exhibit characteristics different from those exhibited by m-

DASs constructed as described in this thesis. Thus, research could be conducted into

alternate means of constructing m-DASs.

As mentioned in the previous section, the immature nature of DASs as a class of

system means empirical data on their performance, effectiveness, and suitability for

different types of operating environment is scarce. For the novel m-DAS, this scarcity is

exaggerated. Thus, there is a significant need for empirical research into deployed, real-

world, DASs and m-DASs.

As mentioned earlier in this section, the application of requirements monitoring

techniques to assumptions is, in itself, novel. Although this thesis makes no claim as to the

utility of assumption monitoring in a system other than a m-DAS, there is a possibility of

the technique being used in non-adaptive systems. In such systems, assumption

monitoring could be used in a manner similar to requirements monitoring, to better

inform stakeholders of operating conditions outside those the system was designed for,

and to better inform maintenance and tuning activity of the experienced operating

environment. Research could thus be performed examining the use of assumption

monitoring data in performing research and tuning.

Section 8.3 identified a limitation to the research in that there exists no research

establishing the number or proportion of adaptive system operating environments that can

be suitably partitioned for ReAssuRE or related approaches. If few operating environments

can be partitioned into domains, ReAssuRE and related approaches solve a niche problem.

If more or most environments may be suitably partitioned, the case studies presented in

this thesis may more closely resemble the general case. Thus, research is required into

adaptive system operating environments.

Page 198

8.5 Closing Remarks

8.5 Closing Remarks

This thesis explores the use of tracing information in requirements models to increase

the utility of the models later in the requirements engineering process, later in the

software engineering process, and at run time. The tracing information can be used later

in the RE process to effect requirements change efficiently, or to identify areas of

uncertainty in the analyst's understanding of the system or environment. At run time, a

suitably constructed m-DAS can use the tracing information to adapt to contexts beyond

those envisaged at design time. Used later in the SE process, the tracing information can

be used to derive a system's adaptive behaviour, or to identify key testing scenarios for m-

DASs.

This thesis presents the ReAssuRE modelling process, which defines modelling

perspectives from which a DAS is viewed, and prescribes the recording of tracing

information that can be used as described above. Also presented is a proof of concept for

the m-DAS class of system, which interprets ReAssuRE models at run time, transforming

them in response to monitored conditions and deriving new adaptive behaviour when

appropriate.

The novel m-DAS class of system has the potential to allow the construction of

systems offering a greater degree of autonomy than currently possible, which may well

prove to be something of a double-edged sword. Systems capable of a greater degree of

autonomy may prove suitable for operation in more volatile, more uncertain and less well

understood environments. However, systems capable of greater autonomy are far more

challenging to deliver assurance in, and thus to depend upon. The two edges of this

metaphorical sword represent the areas in which this thesis aims to drive further research.

Page 199

 Appendix A – Image Viewer's Adaptation Policy

Appendix A – Image Viewer's Adaptation Policy

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ReconfigurationRules>

<ReconfigurationRule>
<FrameWork>Cache</FrameWork>
<Events>

<Event>
<Type>HIGH_LATENCY</Type>
<Value/>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Cache</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>Cache</FrameWork>
<Events>

<Event>
<Type>LOW_LATENCY</Type>
<Value/>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.No_Cache</Name>

</Reconfiguration>
</ReconfigurationRule>

</ReconfigurationRules>

Page 200

 Appendix B – GridStix Adaptation Policy

Appendix B – GridStix Adaptation Policy

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ReconfigurationRules>

<ReconfigurationRule>
<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.MultiNode</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Wifi</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>TRUE</Value>

Page 201

 Appendix B – GridStix Adaptation Policy

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.FewestHop</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Wifi</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.SingleNode</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>

Page 202

 Appendix B – GridStix Adaptation Policy

<Value>FALSE</Value>
</Event>

</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Bluetooth</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.SingleNode</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.FewestHop</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>

Page 203

 Appendix B – GridStix Adaptation Policy

<Type>HIGH_FLOW</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.ShortestPath</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Bluetooth</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.MultiNode</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

Page 204

 Appendix B – GridStix Adaptation Policy

<Event>
<Type>FLOODPREDICTED</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.ShortestPath</Name>

</Reconfiguration>
</ReconfigurationRule>

</ReconfigurationRules>

Page 205

 Appendix C – Annotated GridStix Claim Refinement Models

Appendix C – Annotated GridStix Claim

Refinement Models

This appendix contains the Level-One Claim Refinement Models for the S1, S2 and S3

GridStix target systems, annotated with the monitoring and certainty labels used in the

test-case identification and reduction methods.

Page 206

 Appendix C – Annotated GridStix Claim Refinement Models

S1

Page 207

 Appendix C – Annotated GridStix Claim Refinement Models

S2

Page 208

 Appendix C – Annotated GridStix Claim Refinement Models

S3

Page 209

 Appendix D – Pseudocode for Policy Generation

Appendix D – Pseudocode for Policy Generation

list VariationPoints = list()
for each Goal that appears in all Level-One SR models {

if (count(tasks are connected to the goal with means-end links) > 1) {
VariationPoints.Add(Goal)

}
}
list Reconfigurations = list(SourceTS, DestTS, RemoveComponent, AddComponent)
for each valid target system transition {

for each VariationPoint in VariationPoints {
if (pickedTask(sourceTS,VariationPoint) != pickedTask(destTaS,VariationPoint)
{

Trigger = getTrigger(getLevel2(SourceTS, DestTS))
writeRule(

pickedTask(sourceTS,VariationPoint),
pickedTask(destTS,VariationPoint),
Trigger

)
}

}
}

function pickedTask(TargetSystem, Goal) {
for each Claim in TargetSystem.getClaims() {

for each Task in TargetSystem.getTasks() {
if (isLinked(TargetSystem,Claim,Task)) && (supports(Claim,Task))

{ return Task; }
}

}
}

function getTrigger(Level2Model) {
FireEventTask = Level2Model.findTask("Fire Event When Environment Changes");
List PotentialTriggers = FireEventTask.getConnectedTasks();
for each PotentialTrigger in PotentialTriggers {

if (PotentialTrigger.startsWith("Fire")) { return PotentialTrigger; }
}

}

supports function returns true if claim has a "make" link to a positive
contribution link attacked to specified Task, or a "break" to a negative

writeRule function writes a rule for the specified component switch and trigger

Page 210

 References

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing, (2003).

2. Hughes, D., Greenwood, P., Coulson, G., Blair, G.: GridStix: Supporting Flood

Prediction using Embedded Hardware and Next Generation Grid Middleware.

Proceedings of the 2006 International Symposium on on World of Wireless, Mobile

and Multimedia Networks. pp. 621-626 IEEE Computer Society (2006).

3. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. 2007

Future of Software Engineering. pp. 259-268 IEEE Computer Society (2007).

4. Welsh, K., Sawyer, P.: Managing Testing Complexity in Dynamically Adaptive

Systems: A Model-Driven Approach. Proceedings of the 2010 Third International

Conference on Software Testing, Verification, and Validation Workshops. pp. 290-

298 IEEE Computer Society (2010).

5. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. IEEE Computer. 42, 22-27

(2009).

6. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,

N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An Architecture-Based Approach to

Self-Adaptive Software. IEEE Intelligent Systems. 14, 54-62 (1999).

7. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self-healing systems - survey and

synthesis. Decis. Support Syst. 42, 2164-2185 (2007).

8. Trapp, M., Adler, R., Förster, M., Junger, J.: Runtime adaptation in safety-critical

automotive systems. Proceedings of the 25th conference on IASTED International

Multi-Conference: Software Engineering. pp. 308-315 ACTA Press, Innsbruck,

Austria (2007).

9. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering. 2007

Future of Software Engineering. pp. 285-303 IEEE Computer Society (2007).

10. Berry, D.M., Cheng, B.H.C., Zhang, J.: The four levels of requirements engineering

for and in dynamic adaptive systems. 11th International Workshop On

Page 211

 References

Requirements Engineering Foundation For Software Quality (REFSQ). (2005).

11. Thomas, R.M.: Blending qualitative & quantitative research methods in theses and

dissertations. Corwin Press (2003).

12. Shaw, M.: The coming-of-age of software architecture research. Proceedings of the

23rd International Conference on Software Engineering. p. 656 IEEE Computer

Society, Toronto, Ontario, Canada (2001).

13. Owen, C.: Design Research: Building the Knowledge Base. 5, 36-45 (1997).

14. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y.: Towards requirements-driven

autonomic systems design. SIGSOFT Softw. Eng. Notes. 30, 1-7 (2005).

15. Perry, D.E., Sim, S.E., Easterbrook, S.: Case studies for software engineers. pp. 1045-

1046 ACM, Shanghai, China (2006).

16. Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Hughes, D.: Goal-Based

Modeling of Dynamically Adaptive System Requirements. Proceedings of the 15th

Annual IEEE International Conference and Workshop on the Engineering of

Computer Based Systems. pp. 36-45 IEEE Computer Society (2008).

17. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.: Composing Adaptive

Software, (2004).

18. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications.

Proceedings of the 1994 First Workshop on Mobile Computing Systems and

Applications. pp. 85-90 IEEE Computer Society (1994).

19. Zhang, J., Yang, Z., Cheng, B., McKinley, P.: Adding safeness to dynamic adaptation

techniques. IEE Seminar Digests. 2004, 17-21 (2004).

20. Samimi, F.A., Mckinley, P.K., Sadjadi, S.M.: Mobile Service Clouds: A Self-Managing

Infrastructure for Autonomic Mobile Computing Services.

21. Hughes, D., Greenwood, P., Blair, G., Coulson, G., Smith, P., Beven, K.: An

Intelligent and Adaptable Grid-based Flood Monitoring and Warning System.

22. Li, Q., van der Schaar, M.: Providing Adaptive QoS to Layered Video Over Wireless

Local Area Networks Through Real-Time Retry Limit Adaptation. IEEE Transactions

on Multimedia. 6, 290, 278 (2004).

23. Krief, F.: Self-aware management of IP networks with QoS guarantees. Int. J. Netw.

Page 212

 References

Manag. 14, 351-364 (2004).

24. Canfora, G., Penta, M.D.: Testing Services and Service-Centric Systems: Challenges

and Opportunities, (2006).

25. Baresi, L., Ghezzi, C., Guinea, S.: Towards Self-healing Composition of Services.

Contributions to Ubiquitous Computing. pp. 27-46 (2007).

26. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and

the JBoss rule engine. International workshop on Engineering of software services

for pervasive environments: in conjunction with the 6th ESEC/FSE joint meeting.

pp. 11-20 ACM, Dubrovnik, Croatia (2007).

27. Sierra, C., Faratin, P., Jennings, N.R.: A Service-Oriented Negotiation Model

between Autonomous Agents. Proceedings of the 8th European Workshop on

Modelling Autonomous Agents in a Multi-Agent World: Multi-Agent Rationality.

pp. 17-35 Springer-Verlag (1997).

28. Liu, Y., Ngu, A.H., Zeng, L.Z.: QoS computation and policing in dynamic web

service selection. Proceedings of the 13th international World Wide Web

conference on Alternate track papers \& posters. pp. 66-73 ACM, New York,

NY, USA (2004).

29. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: QoS-Aware Replanning of

Composite Web Services. Proceedings of the IEEE International Conference on Web

Services. pp. 121-129 IEEE Computer Society (2005).

30. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments.

Requirements Engineering, IEEE International Conference on. p. 140 IEEE

Computer Society, Los Alamitos, CA, USA (1995).

31. Kalbarczyk, Z.T., Iyer, R.K., Bagchi, S., Whisnant, K.: Chameleon: A Software

Infrastructure for Adaptive Fault Tolerance. IEEE Trans. Parallel Distrib. Syst. 10,

560-579 (1999).

32. Chang, I., Hiltunen, M.A., Schlichting, R.D.: Affordable fault tolerance through

adaptation. Parallel and Distributed Processing, Lecture Notes in Computer Science

1388. 1388, 585--603 (1998).

33. Welsh, K., Sawyer, P.: When to Adapt? Identification of Problem Domains for

Page 213

 References

Adaptive Systems. Requirements Engineering: Foundation for Software Quality. pp.

198-203 (2008).

34. Robinson, D., Kotonya, G.: A Runtime Quality Architecture for Service-Oriented

Systems. Proceedings of the 6th International Conference on Service-Oriented

Computing. pp. 468-482 Springer-Verlag, Sydney, Australia (2008).

35. Modafferi, S., Mussi, E., Pernici, B.: SH-BPEL: a self-healing plug-in for Ws-BPEL

engines. Proceedings of the 1st workshop on Middleware for Service Oriented

Computing (MW4SOC 2006). pp. 48-53 ACM, Melbourne, Australia (2006).

36. Fickas, S.: Clinical requirements engineering. Proceedings of the 27th international

conference on Software engineering. pp. 28-34 ACM, St. Louis, MO, USA (2005).

37. Liaskos, S., Lapouchnian, A., Wang, Y., Yu, Y., Easterbrook, S.: Configuring

Common Personal Software: a Requirements-Driven Approach. Proceedings of the

13th IEEE International Conference on Requirements Engineering. pp. 9-18 IEEE

Computer Society (2005).

38. Mozilla Foundation: Thunderbird - Reclaim your inbox, http://en-

gb.www.mozillamessaging.com/en-GB/thunderbird/.

39. Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K., Cai, W., Duce, D., Cooper,

C.: GRIDKIT: Pluggable Overlay Networks for Grid Computing. 1463--1481 (2004).

40. Fraunhofer IESE: Welcome to the Ambient Assisted Living Environment, the

Assisted Living Systems Laboratory!,

http://www.iese.fraunhofer.de/projects/med_projects/aal-lab/index.jsp.

41. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H., Bruel, J.: RELAX: Incorporating

Uncertainty into the Specification of Self-Adaptive Systems. Requirements

Engineering, IEEE International Conference on. pp. 79-88 IEEE Computer Society,

Los Alamitos, CA, USA (2009).

42. Denaro, G., Pezzé, M., Tosi, D., Schilling, D.: Towards self-adaptive service-oriented

architectures. Proceedings of the 2006 workshop on Testing, analysis, and

verification of web services and applications. pp. 10-16 ACM, Portland, Maine

(2006).

43. Orriens, B., Yang, J.: A Rule Driven Approach for Developing Adaptive Service

Page 214

 References

Oriented Business Collaboration. Proceedings of the IEEE International Conference

on Services Computing. pp. 182-189 IEEE Computer Society (2006).

44. Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building

context-aware services. J. Netw. Comput. Appl. 28, 1-18 (2005).

45. Tusch, R.: Towards an Adaptive Distributed Multimedia Streaming Server

Architecture Based on Service-Oriented Components. Modular Programming

Languages. pp. 78-87 (2003).

46. Erradi, A., Maheshwari, P., Tosic, V.: Policy-driven middleware for self-adaptation

of web services compositions. Proceedings of the ACM/IFIP/USENIX 2006

International Conference on Middleware. pp. 62-80 Springer-Verlag New York, Inc.,

Melbourne, Australia (2006).

47. Ghezzi, C., Inverardi, P., Montangero, C.: Dynamically Evolvable Dependable

Software: From Oxymoron to Reality. Concurrency, Graphs and Models. pp. 330-353

(2008).

48. Blair, G., Coulson, G., Davies, N., Fitzpatrick, T., Yr, L.: Adaptive Middleware for

Mobile Multimedia Applications. (1997).

49. Schmidt, D.C.: Middleware for real-time and embedded systems. Commun. ACM.

45, 43-48 (2002).

50. Sadjadi, S.M.: A Survey of Adaptive Middleware. Technical Report, Michigan State

University (2003).

51. Schmidt, D.C., Dept, C.E., Cross, J.K., Schantz, R.E., Sharp, D.C., Masters, M.W.,

Dipalma, L.P.: Towards Adaptive and Reflective Middleware For Network-Centric

Combat Systems. (2001).

52. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhã, C., Campbell, R.H.:

Monitoring, security, and dynamic configuration with the

<italic>dynamicTAO</italic> reflective ORB. IFIP/ACM International Conference

on Distributed systems platforms. pp. 121-143 Springer-Verlag New York, Inc., New

York, New York, United States (2000).

53. Roman, M., Kon, F., Campbell, R.H.: Reflective Middleware: From Your Desk to

Your Hand. IEEE Distributed Systems Online. 2, (2001).

Page 215

 References

54. Ledoux, T.: OpenCorba: A Reflektive Open Broker. Proceedings of the Second

International Conference on Meta-Level Architectures and Reflection. pp. 197-214

Springer-Verlag (1999).

55. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J.: A Component Model

for Building Systems Software. in proc. IASTED software engineering and

applications (SEA’04). (2004).

56. Lutfiyya, H., Molenkamp, G., Katchabaw, M., Bauer, M.A.: Issues in Managing Soft

QoS Requirements in Distributed Systems Using a Policy-Based Framework.

Proceedings of the International Workshop on Policies for Distributed Systems and

Networks. pp. 185-201 Springer-Verlag (2001).

57. Lymberopoulos, L., Lupu, E., Sloman, M.: An Adaptive Policy-Based Framework for

Network Services Management. J. Netw. Syst. Manage. 11, 277-303 (2003).

58. Ponnappan, A., Yang, L., Pillai, R., Braun, P.: A Policy Based QoS Management

System for the IntServ/DiffServ Based Internet. Proceedings of the 3rd International

Workshop on Policies for Distributed Systems and Networks (POLICY'02). p. 159

IEEE Computer Society (2002).

59. Sloman, M.: Policy driven management for distributed systems. Journal of Network

and Systems Management. 2, 333-360 (1994).

60. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An Architectural

Approach to Autonomic Computing. Autonomic Computing, International

Conference on. pp. 2-9 IEEE Computer Society, Los Alamitos, CA, USA (2004).

61. Weld, D.S.: Recent Advances in AI Planning. AI MAGAZINE. 20, 93--123 (1999).

62. Brian C. Williams, Urang Nayak: A model-based approach to reactive self-

configuring systems, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?

doi=10.1.1.1.6964, (1996).

63. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote Agent: To Boldly Go

Where No AI System Has Gone Before. (1998).

64. Adve, V., Lam, V.V., Ensink, B.: Language and Compiler Support for Adaptive

Distributed Applications. Proceedings of the 2001 ACM SIGPLAN workshop on

Optimization of middleware and distributed systems. pp. 238-246 ACM, Snow Bird,

Page 216

 References

Utah, United States (2001).

65. Kasten, E.P., Mckinley, P.K.: Adaptive Java: Refractive and Transmutative Support

for Adaptive Software. (2001).

66. Sadjadi, S.M., Mckinley, P.K., Cheng, B.H.C., Stirewalt, R.E.K.: TRAP/J: Transparent

Generation of Adaptable Java Programs. (2004).

67. Welch, I., Stroud, R.J.: Kava - A Reflective Java Based on Bytecode Rewriting.

Proceedings of the 1st OOPSLA Workshop on Reflection and Software Engineering:

Reflection and Software Engineering, Papers from OORaSE 1999. pp. 155-167

Springer-Verlag (2000).

68. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-

adaptive systems. Proceedings of the 2008 international workshop on Software

engineering for adaptive and self-managing systems. pp. 9-16 ACM, Leipzig,

Germany (2008).

69. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An

Agent-Oriented Software Development Methodology. Autonomous Agents and

Multi-Agent Systems. 8, 203-236 (2004).

70. Dardenne, A., Lamsweerde, A.V., Fickas, S.: Goal-directed requirements acquisition.

Sci. Comput. Program. 20, 3-50 (1993).

71. Yu, E.S.K.: Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering. 226--235 (1997).

72. Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.C.S.P.: From Goals to

High-Variability Software Design.

73. OpenOME, an requirements engineering tool,

http://www.cs.toronto.edu/km/openome/.

74. Letier, E., Lamsweerde, A.V.: Deriving operational software specifications from

system goals. Proceedings of the 10th ACM SIGSOFT symposium on Foundations of

software engineering. pp. 119-128 ACM, Charleston, South Carolina, USA (2002).

75. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time

parameter adaptation. Proceedings of the 31st International Conference on Software

Engineering. pp. 111-121 IEEE Computer Society (2009).

Page 217

 References

76. Yin, G., Zhang, Q.: Discrete-time Markov chains: two-time-scale methods and

applications. Springer (2005).

77. Brown, G., Cheng, B.H.C., Goldsby, H., Zhang, J.: Goal-oriented specification of

adaptation requirements engineering in adaptive systems. Proceedings of the 2006

international workshop on Self-adaptation and self-managing systems. pp. 23-29

ACM, Shanghai, China (2006).

78. Goldsby, H., Cheng, B.H.C.: Goal-Oriented Modeling of Requirements Engineering

for Dynamically Adaptive System. Proceedings of the 14th IEEE International

Requirements Engineering Conference. pp. 338-339 IEEE Computer Society (2006).

79. Zhang, J., Cheng, B.: Using temporal logic to specify adaptive program semantics.

Journal of Systems and Software. 79, 1361-1369 (2006).

80. Nakagawa, H., Ohsuga, A., Honiden, S.: Constructing Self-Adaptive Systems Using a

KAOS Model. Proceedings of the 2008 Second IEEE International Conference on

Self-Adaptive and Self-Organizing Systems Workshops. pp. 132-137 IEEE Computer

Society (2008).

81. Letier, E., Lamsweerde, A.V.: Reasoning about partial goal satisfaction for

requirements and design engineering. Proceedings of the 12th ACM SIGSOFT

twelfth international symposium on Foundations of software engineering. pp. 53-62

ACM, Newport Beach, CA, USA (2004).

82. University of Toronto: GRL - Goal-oriented Requirement Language,

http://www.cs.toronto.edu/km/GRL/.

83. Dipartimento di Ingegneria e Scienza dell'Informazione - Università degli Studi di

Trento: Tropos |, http://troposproject.org/.

84. University of Toronto: OME3 Home Page, http://www.cs.toronto.edu/km/ome/.

85. Maiden, N., Pavan, P., Gizikis, A., Clause, O., Kim, H., Zhu, X.: Making Decisions

with Requirements: integrating i* goal modelling and the AHP. Proceedings of the

REFSQ'2002 workshop. , Essen, Germany (2002).

86. Sawyer, P., Bencomo, N., Hughes, D., Grace, P., Goldsby, H.J., Cheng, B.H.C.:

Visualizing the Analysis of Dynamically Adaptive Systems Using i* and DSLs.

Proceedings of the Second International Workshop on Requirements Engineering

Page 218

 References

Visualization. p. 3 IEEE Computer Society (2007).

87. Welsh, K., Sawyer, P.: Requirements Tracing to Support Change in Dynamically

Adaptive Systems. Proceedings of the 15th International Working Conference on

Requirements Engineering: Foundation for Software Quality. pp. 59-73 Springer-

Verlag, Amsterdam, The Netherlands (2009).

88. Welsh, K., Sawyer, P.: Understanding the Scope of Uncertainty in Dynamically

Adaptive Systems. Requirements Engineering: Foundation for Software Quality. pp.

2-16 (2010).

89. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional requirements in

software engineering. Springer (2000).

90. Maiden, N., Manning, S., Jones, S., Greenwood, J.: Generating requirements from

systems models using patterns: a case study. Requir. Eng. 10, 276-288 (2005).

91. Santander, V.F.A., Castro, J.: Deriving Use Cases from Organizational Modeling.

Proceedings of the 10th Anniversary IEEE Joint International Conference on

Requirements Engineering. pp. 32-42 IEEE Computer Society (2002).

92. Feather, M.S., Fickas, S., Lamsweerde, A.V., Ponsard, C.: Reconciling System

Requirements and Runtime Behavior. Proceedings of the 9th international workshop

on Software specification and design. p. 50 IEEE Computer Society (1998).

93. Robinson, W.N.: Monitoring Web Service Requirements. Requirements Engineering,

IEEE International Conference on. p. 65 IEEE Computer Society, Los Alamitos, CA,

USA (2003).

94. Lamsweerde, A.V., Letier, E.: Handling Obstacles in Goal-Oriented Requirements

Engineering. IEEE Trans. Softw. Eng. 26, 978-1005 (2000).

95. Robinson, W.: Monitoring Software Requirements Using Instrumented Code.

Proceedings of the 35th Annual Hawaii International Conference on System

Sciences (HICSS'02)-Volume 9 - Volume 9. p. 276.2 IEEE Computer Society (2002).

96. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements

Reflection: Requirements as Runtime Entities. Track on New Ideas and Emerging

Results (NIER). , Cape Town, South Africa (2010).

97. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-Aware

Page 219

 References

Systems A research agenda for RE for self-adaptive systems. , Sydney, Australia

(2010).

98. Amyot, D., Mussbacher, G.: URN: Towards a New Standard for the Visual

Description of Requirements. Proceedings of the Third International Workshop on

Telecommunications and Beyond: the Broader Applicability of SDL and MSC. 24--26

(2002).

99. The Xiph Open Source community: Theora.org :: main - Theora, video for everyone,

http://www.theora.org/.

100. Flash, iPhone, Silverlight media server and more - Wowza Media Server,

http://www.wowzamedia.com/.

101. Lapouchnian, A., Mylopoulos, J.: Modeling Domain Variability in Requirements

Engineering with Contexts. Conceptual Modeling - ER 2009. pp. 115-130 (2009).

102. University of Toronto: i* Wiki : Guideline (Beginner,Concept) To indicate that a

Goal can be achieved by performing several sub-tasks, model the decomposition by

introducing a Task., http://istar.rwth-aachen.de/tiki-index.php?page_ref_id=206.

103. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability.

IEEE Trans. Softw. Eng. 27, 58-93 (2001).

104. Xavier Franch, Gemma Grau, Enric Mayol, Carme Quer, Claudia Ayala, Carllos

Cares, Fredy Navarrete, Mariela Haya, Pere Botella: Systematic Construction of i*

Strategic Dependency Models for Socio-Technical Systems,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.1436, (2007).

105. Lucena, M., Castro, J., Silva, C., Alencar, F., Santos, E., Pimentel, J.: A Model

Transformation Approach to Derive Architectural Models from Goal-Oriented

Requirements Models. Proceedings of the Confederated International Workshops

and Posters on On the Move to Meaningful Internet Systems: ADI, CAMS, EI2N,

ISDE, IWSSA, MONET, OnToContent, ODIS, ORM, OTM Academy, SWWS,

SEMELS, Beyond SAWSDL, and COMBEK 2009. pp. 370-380 Springer-Verlag,

Vilamoura, Portugal (2009).

106. Alencar, F., Moreira, A., Araújo, J., Castro, J., Silva, C., Mylopoulos, J.: Using Aspects

to Simplify i* Models. Proceedings of the 14th IEEE International Requirements

Page 220

 References

Engineering Conference. pp. 328-329 IEEE Computer Society (2006).

107. Bencomo, N., Grace, P., Flores, C., Hughes, D., Blair, G.: Genie: supporting the

model driven development of reflective, component-based adaptive systems.

Proceedings of the 30th international conference on Software engineering. pp. 811-

814 ACM, Leipzig, Germany (2008).

108. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User and

Multi-Tool CASE and CAME Environment. Proceedings of the 8th International

Conference on Advances Information System Engineering. pp. 1-21 Springer-Verlag

(1996).

109. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain

Analysis (FODA) Feasibility Study. (1990).

110. Bencomo, N., Sawyer, P., Blair, G.S., Grace, P.: Dynamically Adaptive Systems are

Product Lines too: Using Model-Driven Techniques to Capture Dynamic Variability

of Adaptive Systems. SPLC (2). pp. 23-32 (2008).

111. Welsh, K., Sawyer, P.: Deriving Adaptive Behaviour from i* Models. , Hammamet,

Tunisia (2010).

112. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. IEEE Computer. 42, 22-27

(2009).

113. Grace, P., Hughes, D., Porter, B., Coulson, G., Blair, G.: Middleware support for

dynamic reconfiguration in sensor networks. (2007).

Page 221

	1 Introduction
	1.1 Overview
	1.2 Motivation for Research
	1.3 Research Objectives
	1.4 Research Method
	1.5 Novel Contributions
	1.6 Scope of the Thesis
	1.7 Structure of the Thesis

	2 Background
	2.1 Autonomous Systems and DASs
	2.2 Domains Promoting Increasing Autonomy
	2.3 Existing Systems
	2.4 Existing Adaptation Infrastructures
	2.4.1 Multi-Agent Adaptive Infrastructures
	2.4.2 Architectural Adaptive Infrastructures
	2.4.3 AI Planning for Adaptation
	2.4.4 Explicit Programming Language Adaptation Support

	2.5 Chapter Conclusion

	3 DAS Requirements Modelling & Monitoring
	3.1 Requirements Modelling
	3.1.1 KAOS-based DAS Modelling
	3.1.2 i*-based DAS Modelling

	3.2 Requirements Monitoring
	3.3 Chapter Conclusion

	4 ReAssuRE Modelling for DASs
	4.1 The LoREM Process
	4.2 Level One Modelling
	4.2.1 Recording Rationale with Claims
	4.2.2 Examining Assumptions with Claim Refinement Models
	4.2.3 Benefits and Limitations

	4.3 Level Two Modelling
	4.4 Chapter Conclusion

	5 ReAssuRE at Design Time
	5.1 Traceability in ReAssuRE models
	5.1.1 Change in DAS Requirements
	5.1.2 Tracing Examples

	5.2 Policy Derivation
	5.3 Requirements Validation
	5.4 Chapter Conclusion

	6 ReAssuRE at Run Time
	6.1 Run-Time Representation of ReAssuRE models
	6.2 Assumption Monitoring and “broken” Label Propagation
	6.3 ReAssuRE m-DAS architecture
	6.4 Uncovering Emergent Behaviour in m-DASs
	6.5 Chapter Conclusion

	7 Evaluation
	7.1 ReAssuRE models for the GridStix System
	7.1.1 Level-One Strategic Rationale Models
	7.1.2 Level-One Claim Refinement Models
	7.1.3 Level Two Models

	7.2 Tracing Examples
	7.3 Policy Derivation
	7.4 Policy Simulation
	7.5 Requirements Validation
	7.6 Model-Driven Adaptation
	7.7 Testing for Emergent Behaviour
	7.8 Chapter Conclusion

	8 Conclusions and Future Work
	8.1 Research Questions Revisited
	8.2 Research Hypothesis Revisited
	8.3 Limitations
	8.4 Future Work
	8.5 Closing Remarks

	Appendix A – Image Viewer's Adaptation Policy
	Appendix B – GridStix Adaptation Policy
	Appendix C – Annotated GridStix Claim Refinement Models
	Appendix D – Pseudocode for Policy Generation
	References

