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This thesis explores the construction, enrichment and use of requirements models for 

adaptive systems. This thesis proposes the enrichment of adaptive systems' requirements 

models with additional tracing information, preserving the rationale behind configuration 

decisions. The preserved rationale can be utilised at design time, allowing decisions to be 

re-taken in the context of new or changed information and allowing for the identification 

of areas of uncertainty in understanding. The preserved rationale can also be used by a 

system itself, at run time, allowing it to adapt its behaviour to contexts not fully envisaged 

at design time.

This  thesis  presents  the  ReAssuRE  modelling  process,  which  defines  modelling 

perspectives  from  which  some  classes  of  adaptive  system  may  be  viewed.  ReAssuRE 

models embed the described tracing information, and may be interpreted and reasoned 

with  by  a  suitably  constructed  system at  run  time.  This  thesis  presents  tool  support, 

allowing adaptive behaviour to be derived directly from ReAssuRE models. Finally, this 

thesis presents proof of concept components that allow a system to reason with ReAssuRE 

models,  transforming  them  in  response  to  monitored  data,  and  derive  new  adaptive 

behaviour.
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1  Introduction

1 Introduction

1.1 Overview

Today's software is increasingly complex, consisting of ever larger numbers of distinct, 

interdependent  components.  Furthermore,  this  software  is  increasingly  expected  to 

operate  in  ever  more  changeable  environments,  which  necessitates  software  of  even 

greater  complexity.  Autonomous  systems  that  monitor,  configure,  tune  and  heal 

themselves  independently  of  human  interaction  are  perceived  as  necessary  to  allow 

systems to operate in volatile environments, and to mitigate this increasing complexity [1]. 

Although, for most tasks, completely autonomous systems are beyond our reach today, we 

are creating systems that posses  some ability to  alter  their  behaviour as  the operating 

environment changes [2].

Dynamically Adaptive Systems (DASs), sometimes referred to as self-managed systems 

[3], monitor their operating environment at run time, and adjust their behaviour to better 

achieve system goals in response to detected changes. Many current DASs offer only a 

finite set of potential configurations, and the only real autonomy is found in the system's 

ability to select an appropriate configuration for the current environmental context. 

Despite the potential for DASs to mitigate increasing software complexity, adaptive 

behaviour is in itself somewhat complex. A state of the art DAS utilises a reusable adaptive 

infrastructure to enable adaptation [2]. An adaptive infrastructure codifies per-application 

adaptive behaviour in adaptation policies, which explicitly state which configurations are 

to be used under which environmental contexts.

The  rigidity  in  pre-specifying  configurations  and  tying  them  to  specific  contexts 

introduces  a  limitation  in  a  DAS's  adaptive  capability:  only  environmental  volatility 

anticipated  at  design  time  can  be  addressed.  To  allow  a  DAS  to  tolerate  completely 
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1.1  Overview

unexpected environmental change, a greater degree of autonomy is required. There are a 

number  of  ways  in  which  a  DAS  may  be  able  to  operate  with  a  greater  degree  of 

autonomy: it could use some form of artificial intelligence (AI), for example. However, 

merely increasing the level of intelligence underpinning configuration selection decisions 

does not remove the limitation: the DAS is still only cycling through a number of pre-set, 

human-specified configurations. To create a system that is genuinely more autonomous, it 

is necessary for the DAS to devise and adopt configurations that were not pre-specified by 

humans when it is faced with operating conditions outside those envisaged at design time.

There  is  an  inherent  danger  in  granting  systems  an  ever  increasing  degree  of 

autonomy: that we lose the ability to predict their behaviour and that we can no longer 

assure that the autonomously devised configuration is optimal, or even correct. How can 

we expect to deliver assurance if  we aren't even sure what the system will  do? There 

appears to be a fundamental trade-off between autonomy and predictability [4].

DASs present challenges to the software engineering research community in terms of 

their potential scale and complexity. Software engineering is optimised for the design and 

specification  of  systems  that  operate  in  steady,  non-volatile  environments,  and  for 

verifying the behaviour of a constructed system to ensure that it really does behave as 

expected.  However,  for  a  DAS  these  tasks  have  to  be  performed  for  each  available 

configuration,  and  each  environmental  context.  For  a  DAS,  the  software  engineering 

workload can, potentially, be orders of magnitude greater than for a non-adaptive, so-

called static system.

This thesis presents the ReAssuRE modelling approach, which allows the behaviour of 

a DAS to be modelled during the requirements engineering process. The models feature 

enhanced traceability, which improves the changeability of the models. The potentially 

poorly  understood,  volatile,  nature  of  the  operating environments  in  which DASs  are 

deployed, and the difficulty of predicting the behaviour of a DAS in these challenging 

environments promotes changeability as a key concern for DAS requirements models. 
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1.1  Overview

This thesis also introduces a new class of DAS, called a model-driven Dynamically 

Adaptive System (m-DAS). This class of DAS uses design-time models to guide run-time 

adaptation  decisions,  and  is  a  natural  application  of  the  emerging  models@run.time 

paradigm [5] to DASs. This thesis demonstrates how ReAssuRE models can be used by a 

m-DAS to devise new configurations in response to unforeseen environmental conditions 

by combining components in combinations not prescribed at design time, whilst operating 

in the same way as a DAS in the conditions for which the system was designed.

To address the autonomy vs. predictability trade-off, this thesis also presents a model-

directed testing approach, that uses model analysis of the ReAssuRE models constructed 

for a m-DAS to identify scenarios that offer the potential to prompt a m-DAS to display 

emergent behaviour. A means of analysing the likelihood of the scenarios occurring with a 

view to directing limited testing resources to the most likely of these key scenarios is also 

presented.

1.2 Motivation for Research

Systems  able  to  configure  themselves  during  installation,  optimise  their  behaviour 

during day-to-day use, heal themselves in the event of problems and protect themselves 

from  attack  are  a  staple  of  science-fiction  writers,  and  represent  a  utopian  view  of 

computing  shared  by  many  [1] [6].  Today's  reality  is,  however,  somewhat  different. 

Systems are typically configured by hand in a process prone to error, with optimisation 

occurring  more  frequently  by  means  of  maintenance  performed  whilst  the  system is 

offline than in real-time by the system itself. System protection tends to come in the form 

of designers anticipating specific threats and taking steps to mitigate them, although some 

systems can adopt special modes designed to allow the system to continue operating when 

attacked [7] We are also seeing systems that posses some ability to recover from error, or 

at least posses a reduced functionality “limp” mode, activated indiscriminately in the event 

of any serious error [8]. 
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Although  the  degree  of  autonomy  described  in  the  above  scenarios  is  low,  the 

commonality among all of these lightly autonomous systems is the presence in each of an 

alternate mode of operation, that the system adopts when appropriate. As such, it becomes 

trivial to envisage a system with more numerous modes of operation, that can tolerate a 

wider range of environmental variance. A DAS is a useful abstraction over this class of 

system, with the term DAS imposing no restriction in the number, type or purpose of the 

modes  a  system may  adopt,  or  the  frequency  with  which  they  are  adopted.  A  more 

advanced DAS offers a greater number of modes, tailored to a greater range of variability 

in the operating environment, with greater intelligence driving the selection decisions. 

Essentially, a DAS embodies the state-of-the-art in autonomic computing.

DASs are difficult to design and specify because each mode of operation in a DAS has 

all of the complexity of a complete system, essentially multiplying the associated software 

engineering workload. Furthermore, if the operating environment itself is volatile,  this 

volatility needs to be factored into the requirements engineering process, and there's the 

issue of how the system is to decide which mode of operation should be used under each 

environmental  context.  Combined,  these  factors  increase  the  complexity  of  the 

requirements engineering process and the research community is beginning to recognise 

DASs as a class of system that require special treatment during the RE process [9] [10].

In much the same way as design and specification workload increases with the number 

of  modes  of  operation  a  DAS  supports,  the  testing  workload  likewise  increases 

dramatically. Not only does each mode of operation need testing thoroughly, but also the 

mechanism by which the need for adaptation is identified, the mechanism responsible for 

selecting appropriate configurations, and the mechanism effecting adaptation need testing.

For a DAS designed as an aggregation of individual components, its configurations are 

essentially different combinations of components selected from a fixed set. In such a DAS, 

it may be possible to offer some degree of assurance by testing the individual components, 

rather than complete configurations. This testing method offers only partial coverage, and 

clearly impacts on the level of assurance it is possible to offer. Furthermore, this testing 

method would only reduce workload in DASs in which the number of modes of operation 
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is high and the number of distinct components is low. A DAS using other techniques may 

require every mode of operation to be tested in much the same way as a complete static, 

non-adaptive, system needs to be tested, thus creating an overwhelming testing burden.

The research is, therefore, motivated by three key concerns:

1. The difficulty in performing RE for a DAS

2. The difficulty in testing a DAS

3. A deficiency in the ability of a DAS to adapt to environmental contexts not 

envisaged, understood and designed for prior to deployment. 

1.3 Research Objectives

At its highest level, the research aims to improve the Software Engineering support 

available  to  autonomous  system  developers.  More  specifically,  the  research  aims  to 

improve modelling support for DASs during the Requirements Engineering process, and to 

maximise the usefulness of the generated models later in the software engineering process, 

potentially even at run time. 

The later use of requirements models that is targeted by this thesis is in controlling the 

adaptive behaviour of a DAS. The adaptive behaviour of a DAS is that concerned with the 

configuration  changes  made  in  response  to  changes  in  the  environment.  This  thesis 

explores whether this adaptive behaviour is specified solely from configuration decisions 

taken during the RE process, and whether enough information about the decisions can be 

codified in a requirements model to allow the model to be used as a specification of a 

DAS's adaptive behaviour.

If requirements models are to be used in this way, the purpose of the models will be 

transformed  from  illustrative  and  communicative  to  prescriptive.  Thus,  the  issues  of 

accuracy  and  currency  become crucial:  an  erroneous  or  out  of  date  model  will  yield 
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improper  behaviour  from  the  deployed  DAS.  The  ability  to  re-visit  a  model  after  a 

requirements change, for example, allowing the analyst to establish whether changes are 

necessary and make them, becomes essential.

The  use  of  a  collection  of  requirements  models  at  run  time,  to  guide  a  DAS's 

adaptation, would involve the DAS itself analysing the models, adjusting them in response 

to  environmental  changes,  and  using  the  changed  models  to  prescribe  new  adaptive 

behaviour.  As  discussed  in  Section  1.1,  this  additional  autonomy comes  at  a  price  of 

predictability.  Delivering assurance in a  relatively unpredictable system operating in a 

volatile environment is challenging. This thesis explores how the degree of assurance that 

can be offered with incomplete testing coverage can be maximised.

As such, the research aims to answer the following questions:

1. To  what  extent  is  a  DAS's  adaptive  behaviour  merely  a  derivation  of 

environmental analysis and configuration decisions?

2. Can  the  information  from  the  environmental  analysis  and  configuration 

decisions be codified in models, and is it useful to do so?

3. Given that  both the information from the environmental  analysis  and the 

configuration  decisions  are  subject  to  change,  how  can  the  workload  of 

deriving a DAS's adaptive behaviour be reduced?

4. How  can  a  system  be  designed  with  a  greater  degree  of  autonomy  than 

current state-of-the-art DASs, and is the extra autonomy useful?

5. How can the testing workload be managed in systems with greater autonomy?

The extent  to  which a  DAS's  adaptive  behaviour is  a  derivation of  environmental 

analysis  and  configuration  decisions  is  a  key  issue.  If  entirely,  it  becomes  possible  to 

reduce the workload in prescribing the adaptive behaviour explicitly using a specification 

document by using a model instead. The workload associated with actually creating the 
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DAS's  adaptive  behaviour  could  even  be  eliminated  if  it  is  possible  to  perform  the 

derivation automatically. 

If the adaptive behaviour of a DAS can be derived from the results of environmental 

analysis and configuration decisions, then it would be desirable to capture both pieces of 

information in some kind of model. Deriving adaptive behaviour from the model should 

be both efficient and repeatable, and would allow the DAS's behaviour to be altered in 

response to changes in the model or the underlying understanding. The second research 

question is concerned with this adaptive behaviour modelling.

The third research question is concerned with automating the derivation of a DAS's 

adaptive behaviour directly from the models mentioned in the second research question. 

Automating  the  derivation  of  adaptive  behaviour  would  not  only  reduce  workload 

associated with the task, but also offer the possibility of allowing a DAS to perform the 

derivation autonomously, in response to changes in its own models.

The  fourth  research  question  stems  from  the  suggestion  made  in  the  previous 

paragraph. If a DAS can change its own model in response to deficiencies in the model or 

changes in the environment, and can derive its own adaptive behaviour from the changed 

model, this new system would offer a greater degree of autonomy than current DASs. The 

question of whether this extra autonomy could prove useful will require analysis, and the 

question of whether the extra complexity introduced by the autonomy will justify any 

extra usefulness will remain.

The fifth and final research question concerns the testing of a system with greater 

autonomy.  The  testing  of  a  DAS  is  already  vastly  more  challenging  than  for  a  non-

adaptive, static system in terms of scale. Increasing a system's autonomy further will likely 

compound this problem, and may place the complete testing of such a system beyond the 

realms of feasibility for all but the simplest systems, and all but the biggest budgets.
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1.4 Research Method

Most research in the broad field of Software Engineering can be characterised as either 

qualitative or quantitative, although it is common for research to exhibit features of both 

paradigms [11]. Quantitative research focusses on the collection and analysis of measured 

numerical data, with underlying trends identified by deduction and compared to a testable 

hypothesis, disproving or supporting it. However, there are many research topics within 

Software Engineering which provide little or no opportunity for quantitative analysis, or 

for which quantitative analysis of available numerical data would offer limited insight. 

Research practice in these areas typically follows a qualitative approach, which is more 

subjective,  involving the interpretation of data to refute or support a theory.  As such, 

there is no single well-established research approach in the field of Software Engineering 

[12] or more specifically Requirements Engineering.

This thesis's work lies within the modelling methods area of RE, which is more of a 

synthetic discipline than analytic. Synthetic disciplines are concerned with invention and 

improvement,  whereas  analytic  disciplines  are  concerned  with  discovery  [13].  The 

modelling methods research area concerns itself with the invention and improvement of 

mechanisms for representing systems through part or whole of the RE process, or indeed 

later into the Software Engineering process. The hypothesis typically under test in such 

research is that the invention or improvement will prove useful in some specific context. 

In this light, this thesis's hypothesis is:

When  performing  early-phase  RE  for  a  Dynamically  Adaptive  System,  the 

recording of additional tracing information will better support change later in the 

software engineering process. Recorded tracing information can be used during 

development to derive the adaptive behaviour of a DAS (the concern of switching 

from one configuration to another as the environment changes), and by the DAS 

itself after deployment to better adapt to unforeseen conditions.
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 This  thesis  argues  that  the  volatile  and  uncertain  nature  of  DASs'  operating 

environments promotes the importance of an effective and efficient change management 

process, and offers increased potential for a deployed DAS to encounter conditions that 

were not envisaged a priori.

To test this hypothesis, this thesis uses two case studies. The first, is an illustrative case 

study to demonstrate the method and its potential benefits, providing proof of concept. 

This case study was introduced in [14] to provide proof of concept of the ability of DASs to 

tolerate contextual variability, so it is fitting that methodological support for such systems 

is depicted in the same terms. The second case study assesses the method's relevance and 

scalability in a larger, real-world DAS. There are only a limited number of DAS exemplar 

systems, and a desire to validate the method's benefits on a real-world system colours the 

choice of second case study.

The use of case studies to validate work that by nature is both synthetic and qualitative 

is  discussed  by  Perry  et.  al [15],  who  argue  that  case  studies  are  well  suited  to 

methodological  research.  They  argue  that  case  studies  are  well  suited  to  answering 

questions of  how and  why a method works, is used, or can be improved in real-world 

settings in which there is little experimental control. 

1.5 Novel Contributions

This  thesis  presents  the  ReAssuRE  modelling  process,  which  features  enhanced 

traceability;  promoting  ease-of-change  throughout  the  RE  process  and  beyond.  The 

models are also amenable to automated analysis.

Demonstrating the ReAssuRE models' amenability to automated analysis, this thesis 

presents  the  TelosTools  model  parser,  which  allows  existing  ReAssuRE  models  to  be 

formalised, loaded, understood and reasoned with either by a DAS itself at run time or by 

specialised tools, which offer the possibility of developing tool support for checking, using 

and reasoning about ReAssuRE models. One such tool, designed to support the hypothesis 

Page 9



1.5  Novel Contributions

introduced in Section 1.4, generates so-called adaptation policies automatically from a set 

of  ReAssuRE models.  Adaptation policies  are used by some adaptive infrastructures to 

codify a DAS's adaptive behaviour and are discussed further in Section 2.4.1. 

Although  DASs  are  a  significant  class  of  system in  terms  of  autonomous  systems 

research, the level of autonomy offered is currently relatively low, as highlighted by the 

third  motivating  concern  presented  in  Section  1.2.  Addressing  this  deficiency,  and 

utilising  the  ability  to  derive  adaptive  behaviour  from  ReAssuRE  models  discussed 

previously, this thesis introduces a new class of autonomous system. A model-driven DAS, 

or  m-DAS,  uses  design-time  models  such  as  ReAssuRE  models  to  guide  its  run-time 

adaptation. This thesis demonstrates that this new class of system possesses some limited 

ability to redress deficiencies or errors in the design-time models, modify the models, and 

derive new adaptive behaviour from the modified models. 

This thesis presents a model-directed testing method by which scenarios that do not 

offer  the potential  for  a  m-DAS to derive new adaptive  behaviour,  and thus  offer  no 

potential to display emergent behaviour, can be discarded. The remaining scenarios can be 

categorised by likelihood in order to allow limited testing resources to be directed at the 

most  likely  of  the  scenarios  that  could  potentially  uncover  emergent  behaviour.  This 

pragmatic approach would allow some level of assurance to be afforded an autonomous 

system  through  testing,  without  requiring  the  impossible  individual  testing  of  every 

possible combination of environmental factors and configurations.

1.6 Scope of the Thesis

This  thesis  focusses  primarily  on requirements  modelling for  dynamically  adaptive 

systems.  Although  this  thesis  seeks  to  make  a  contribution  to  the  requirements 

engineering  of  autonomous  systems  as  a  whole,  the  modelling  approach  presented  is 

designed specifically for DASs. This thesis discusses requirements engineering for systems 
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with  greater  autonomy,  and presents  one  such class  of  system.  However,  the  class  of 

system presented are an evolution of DASs, rather than a revolutionary new system.

Also, requirements traceability for, and the testing of DASs, are discussed at length, 

but this discussion is constrained to the potential benefit derived from the early-phase 

requirements modelling approach. The modelling approach itself may also be applicable to 

non-adaptive  systems,  still  delivering  benefit  in  terms  of  traceability  which  may  be 

valuable in some classes of system. However, no work has been undertaken to assess the 

approach in non-adaptive systems, and no claims of suitability are made.

This thesis concerns itself solely with environments that can be partitioned cleanly 

into distinct contexts, enabling a specific configuration to be tailored to a defined set of 

environmental circumstances. This thesis makes no claim that all problem domains for 

which a DAS could be conceived can be partitioned as such, and this focus introduces a 

key limitation to the work. There are approaches to designing, specifying and delivering 

autonomous systems without this limitation, but work is at an early stage, with reference 

to it made purely to provide context.

It should be noted that even an environment well suited to partitioning is likely to still 

have a relatively high degree of uncertainty in its nature. The act of partitioning further 

increases the level of uncertainty with which the DAS has to operate, given the possibility 

of the partitioning itself being sub-optimal. Although a DAS with greater autonomy may 

be able to overcome some partitioning deficiencies, this potential isn't explored fully and 

will be left to future work.

1.7 Structure of the Thesis

Chapter 2 of the thesis presents a literature review of the autonomous systems and 

DAS research area as a whole, examining the scenarios for which which such systems are 

conceived,  how they are  constructed  and tested,  and detailing  the systems already in 

existence.
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Chapter 3 presents a more focussed literature review, examining in detail the efforts of 

the RE research community to support DAS specification with modelling techniques. The 

LoREM modelling approach [16], on which much of the research is based, is detailed in 

particular.

Chapter 4 presents the ReAssuRE process, detailing the extensions made to the existing 

LoREM modelling approach, how ReAssuRE models are constructed and the information 

they are designed to capture. The chapter also demonstrates how notation style affects the 

precision, richness and complexity of the completed model.

Chapter  5  presents  part  of  the  thesis's  first  case  study,  focussing  on  the  use  of 

ReAssuRE models at design time. The chapter demonstrates how the additional tracing 

information codified in ReAssuRE models can be used to manage change, and to identify 

areas of uncertainty in system or environmental understanding. The chapter also details 

how adaptive behaviour can be derived from ReAssuRE models automatically.

Chapter 6 presents the second part of the proof-of-concept case study, continuing from 

Chapter  5  and  focussing  on  the  use  of  ReAssuRE  models  at  run  time.  The  chapter 

demonstrates  the  construction  of  a  m-DAS  capable  of  loading  and  reasoning  with 

ReAssuRE models  to  guide  adaptation.  Finally,  the  chapter  details  the  model-directed 

testing method by which a degree of assurance can be afforded to a m-DAS when testing 

resources are too limited for complete testing.

Chapter 7 presents a larger, more complex case study in which the ReAssuRE process 

has been applied to a real-world DAS to assess the effectiveness of the ReAssuRE Process, 

with respect to the objectives of the research.

Chapter 8 concludes the thesis, drawing discussion to a close. The chapter includes a 

brief summary of the thesis, and revisits the research questions, objectives and hypothesis 

introduced  in  Sections  1.3 and  1.4.  The  chapter  includes  a  discussion  of  the  work's 

limitations and potential future enhancements.
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2 Background

This chapter presents a relatively broad survey of the autonomous systems research 

area  as  a  whole,  to  illustrate  how  DASs  represent  an  important  step  towards  fully 

autonomous systems. As the chapter progresses, the focus shifts towards existing systems 

that display some degree of autonomy, and the technology behind and examples of state-

of-the-art DASs. The state of the art with regard to software engineering support for DASs 

is examined in the next chapter.

DASs are beneficial when dealing with volatile, uncertain environments. An ability to 

adjust its own behaviour allows a DAS to operate effectively in a broader set of conditions 

than  a  non-adaptive  system,  which  means  that  a  DAS  can  be  created  to  operate  in 

environments for which it was previously thought of as infeasible to do so. As a result, 

DASs are typically expected to operate in environments that are complex and changeable, 

and  often  incompletely  or  misunderstood.  Relatively  few additional  environments  are 

made  feasible  by  considering  a  DAS,  and  the  next  section  discusses  the  type  of 

environment for which a DAS is suitable. Also discussed are the broad types of adaptation 

a DAS may utilise, and the types of environment each is more suited to.

2.1 Autonomous Systems and DASs

A system that is self-managing, self-configuring, self-tuning, self-repairing and self-

maintaining is a staple of science-fiction [10]; and the potential of such a fully autonomous 

system is easy to see, with a particularly striking example presented by Oreizy et. al. [6]. 

These systems are, however, some distance away from becoming reality. At present, we 

are starting to create systems that posses a limited ability to perform self-configuration as a 

means to achieve a degree of autonomy. These relatively primitive autonomous systems 

are termed self-adaptive, or dynamically adaptive systems.
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McKinley et. al. [17] identified two distinct types of adaptive behaviour a system can 

exhibit.  The  first,  named  “parameter  adaptation”  involves  the  modification  of  some 

internal parameter or flag that causes the system to exhibit a change in behaviour. Such 

adaptation  is  ideally  suited  for  switching  between  a  small  number  of  pre-defined 

behaviours according to fixed criteria. So-called context-aware systems  [18] often utilise 

this form of adaptation, which can be viewed as the more rudimentary form of adaptation. 

Parameter  adaptation's  greatest  weakness  is  that  the  system's  behaviour  must  be 

defined in  its  entirety  at  compile-time  [17], along with  the logic  that  determines  the 

switching between different behaviours, or more accurately the setting of the parameter. 

As such, any change in the environment that was not envisaged at design time cannot be 

adapted to without taking the entire system off line for code or components to deal with 

the new environmental situation to be added.

A proposed adaptive system that is intended for operation in an environment that has 

relatively few, but well understood variances, can take advantage of parameter adaptation 

to minimise additional complexity. It could be argued that the only time that parameter 

adaptation  proves  insufficient  is  when  a  system  encounters  an  unforeseen  context. 

Although the system possesses some ability to adjust its behaviour, it remains relatively 

“brittle” and has no means to adapt to the unexpected conditions. Unfortunately, this lack 

of malleability could well cause the system to fail, and if dependability is an issue for the 

proposed  system,  parameter  adaptation  could  prove  unsuitable.  Thus,  the  use  of 

parametric adaptation depends on full faith being held in the environmental analysis. In 

practice,  as  environmental  complexity and uncertainty  increases,  parameter  adaptation 

scales badly, and other approaches are favoured.

More advanced forms of parameter adaptation can utilise artificial intelligence (AI) to 

switch between available behaviours. Such approaches use machine learning techniques to 

record  effective  combinations  of  parameters  in  certain  situations  for  later  re-use,  and 

reason with this knowledge to allow systems to configure themselves when encountering 

previously unseen conditions. 
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Parameter adaptation encompasses so-called moded systems, which have been created 

for some time. These systems offer several differing modes of operation, selected either 

manually or automatically to allow some degree of flexibility in the system's operation. 

For example, it is common for automotive engine management systems to posses a “limp 

home” mode, which allows the engine to run with reduced power with the system in a 

simple configuration in the event of serious error, allowing the vehicle to be driven home 

before  requiring  repair.  Parameter  adaptation  is,  as  such,  not  a  new  concept;  its 

importance  being  to  contrast  the  second,  emerging  type  of  adaptation:  compositional 

adaptation.

The second type of adaptation is known as “compositional adaptation” or sometimes 

“structural  adaptation”.  Compositional  adaptation  refers  to  the  fact  that  the  structural 

elements that make up such a system can be swapped, rearranged or removed dynamically 

in response to changes in context.  A system utilising compositional adaptation can use 

different combinations of these structural elements to radically alter its behaviour. Simpler 

compositionally adaptive systems may still define the combinations of structural elements 

that  are to be used in which contexts  explicitly  and rigidly by hard-coding strategies. 

More advanced systems, however, allow the strategies to be updated or adjusted at run 

time supporting tuning and maintenance. More advanced still, it may be possible for a 

system  to  develop  the  strategies  itself,  perhaps  in  response  to  some  unforeseen  or 

previously unseen environmental conditions. There is a clear path by which systems using 

compositional adaptation can operate with increasing autonomy.

State-of-the-art DASs rely on the specification of which structural elements are to be 

combined in what manner under which contexts.  The software,  and more specifically 

requirements engineering support for this process forms the focal point of much of this 

thesis, and is discussed further in Section 3.1. The step forward (in terms of autonomy) to 

systems that can develop or revise these specifications is another central theme, and is 

discussed at length in Chapter 6. 

A DAS's ability to tailor its behaviour to accommodate changes in context is analogous 

to the system performing tuning or maintenance autonomously. However, a DAS's ability 

Page 15



2.1  Autonomous Systems and DASs

to tune itself to some conditions, or to perform some maintenance online does not remove 

the need to perform the tasks in circumstances outside those for which it was specifically 

designed. In this respect, a DAS may have a wider operating envelope than a traditional, 

static system, but there are still many potential sources of change that may necessitate 

human intervention. Ideally, as system autonomy increases,  so too should the system's 

operating envelope, and the need for human intervention should decrease.

Software Engineering has been slow to support DASs explicitly. Regardless, there are 

several domains in which we are seeing DASs created currently, and these are discussed in 

the next section.

2.2 Domains Promoting Increasing Autonomy

The desire to operate in certain domains acts to drive the development of DASs. In 

these  domains,  the  expected  operating  environment  exhibits  significant  volatility,  and 

systems are being developed with adaptive capability to allow them to function in the face 

of uncertainty. This section discusses some of the more prevalent examples of domains in 

which DASs have proven beneficial.

Perhaps the best known domain in which autonomy is becoming prevalent is that of 

the network-centric system. In this context, software is increasingly expected to operate 

on lossy, congested and sometimes unreliable wireless networks [19] [20]. In some cases, 

software is expected to operate seamlessly atop several different network infrastructures, 

which are switched between as available [21]. In all of these cases, the primary source of 

design-time uncertainty is the level and quality of network connectivity, with adaptation 

taking place to tolerate poor network performance and to best utilise faster, more reliable 

network connectivity when available.

There has also been much work into developing systems for autonomously managing, 

maintaining and best utilising so-called Quality-of-Service (QoS) in resource constrained 

networks  (e.g.  [22] [23]).  In  this  field,  software  is  expected  to  adapt  to  maintain 
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functionality  in  the  face  of  the  potentially  volatile  availability  of  network  resources. 

When resources are scarce, applications deemed less worthy, either by their own labelling 

as  in  [22] or  by  dictatorship  as  in  [23] of  network resources  have their  access  to  the 

resources constrained or denied, but are expected to continue functioning to as great a 

degree  as  possible.  The QoS field,  from an autonomy perspective,  is  analogous  to  the 

network-centric systems field, in that adaptation is used as a means to mitigate network-

originating uncertainty.

A  degree  of  autonomy  has  emerged  in  the  service-oriented  systems  field.  These 

systems  are  particularly  interesting  because  their  use  of  adaptation  isn't  limited  to 

tolerating network-originating uncertainty. Autonomous, service-oriented systems use so-

called  late binding  [24] to  allow units  of  work to  be completed  by different  concrete 

services. Thus, a decision to offload a given unit of work to an alternative service, can 

result in a change in the overall system's observable behaviour. Using different underlying 

services may affect overall response time, accuracy or availability  [25] [26], for example. 

The  most  promising  approaches,  from  the  perspective  of  autonomy,  use  brokers  to 

establish  and  potentially  negotiate  requirements  [27],  select  appropriate  services  and 

monitor  requirement  fulfilment  [28] and switch  underlying services  to  better  achieve 

these requirements  [29].  All of  these tasks map well onto the traditional requirements 

engineering  practices  of  requirements  acquisition  and  negotiation,  decision  making, 

requirements monitoring [30], and our concern: adaptation.

Another area in which systems are increasingly expected to perform autonomously is 

that of fault-tolerant systems. These systems posses an ability to offer either complete [31] 

or  partial  [32] functionality  in  the  event  of  some failure.  Here,  adaptation  is  used  to 

replace, if continuing to offer complete functionality, or to operate without, if offering 

partial  functionality,  the  failed  component.  Although  this  style  of  behaviour  would 

typically fall within the scope of a moded system, it fulfils the definition of parametric 

adaptation, as discussed in Section 2.1. It should also be noted, that as both the software 

engineering  practice  supporting,  and  the  technology  underpinning  compositional 
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adaptation improves, such functionality could be richer and more easily included using 

the more advanced adaptation style.

Although the systems developed for all of these domains differ slightly in the goals 

that each system's autonomy seeks to achieve; a commonality emerges: each of the systems 

adapts to enable it to better attain a certain software quality, be it speed, availability or 

reliability. These quality features would usually be represented at the requirements stage 

by  one  or  more  non-functional  requirements  (NFRs).  A  system's  ability  to  attain  the 

quality, or to fulfil the NFR, to any given degree is affected by changes in its operating 

environment, be this a change in available network resources, the poor performance of a 

service, or a software failure. In short, all of these systems adapt to best satisfy their NFRs 

in changing contexts, as posited in [33].

2.3 Existing Systems

There are several existing DASs that have been created, each using adaptation as a 

means  to  address  specific  problems.  This  section  explores  several  of  the  systems 

highlighting how each effects adaptation, and how this adaptation helps the DAS to better 

fulfil its goals.

The  first  DAS  examined  is  Lapouchnian  et.  al.'s  adaptive  image  viewer  [14].  This 

simple application was designed as a pedagogical DAS to highlight the complexity of the 

requirements engineering process in autonomous systems. The adaptive image viewer is a 

simple application for viewing images, whose only adaptive capability is to introduce or 

remove a caching component.  Note that  that such simplistic  adaptive behaviour could 

easily be created using parametric adaptation, but the authors chose to use compositional 

adaptation so that the adaptive image viewer more closely reflected more complex DASs. 

The  adaptive  image  viewer  introduces  the  caching  component  in  an  effort  to  reduce 

latency when loading images for viewing, and removes it when the additional memory 

required by the cache can no longer be spared. The adaptive image viewer operates in a 
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relatively simple environment, with a simple Boolean variance: “Is there enough memory 

to use the cache?” The simplicity of the adaptive image viewer serves as a great asset when 

illustrating Software Engineering support or construction techniques for DASs. This thesis 

relies heavily on this example when introducing the ReAssuRE process in Chapter 4.

A  good  example  of  a  service-oriented  system  that  may  be  considered  a  DAS  is 

Robinson & Kotonya's  navigation system  [34].  The navigation system was  designed to 

showcase a quality framework for service-oriented systems, which makes an interesting if 

domain-specific adaptive infrastructure. The service broker, which the navigation system 

is designed to showcase, invites applications to request services including a specification of 

several  quality features the application requires  the underlying service to  meet.  These 

quality  features  are  limited  to  a  selection  supported  by  the  broker  including  latency, 

availability and cost. The specification is matched with the details held by the broker on a 

catalogue of available services, and if necessary the specification is negotiated to allow it to 

be fulfilled.

Limiting the quality features that an application may request a service to provide may 

seem restrictive, but doing so enables the broker itself to monitor service performance, 

and to renegotiate with or re-bind services to the application if performance falls below an 

acceptable level. It can be argued that all service-oriented systems operate in a relatively 

volatile context. When some unit of work is provided by an agent outside of the system's 

control  it  is  natural  to  anticipate  potential  availability  or  performance  problems,  and 

adaptation, in the form of late binding in this case, can provide a useful means to mitigate 

this uncertainty.

One system illustrating this service and broker approach to adaptation is a navigation 

system. The navigation system relies on external services to provide location data, road 

maps,  route  calculations  and  points  of  interest  to  display  on  the  map.  Each  of  these 

services are selected at run time from a pool of available services, with quality features 

that fluctuate in line with network performance,  service loading and the potential  for 

random failure. The navigation system negotiates with the service broker, and thus with 
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the service providers, to obtain all of these services at as low a cost as possible whilst still 

maintaining acceptable performance and reliability.

Although the scope of Robinson and Kotonya's service broker is limited to service-

oriented systems, it represents a novel approach to autonomy, and adaptation as a whole. 

The broker's ability to negotiate quality performance measures with both service providers 

and the system is  analogous to  design-time decisions made when engineering systems 

from scratch, and the performance monitoring aspect is near identical to requirements 

monitoring work proposed by Fickas and Feather [30].

There is some work that uses adaptation to maintain availability of service-oriented 

systems [25] [26] [35]. This work targets aggregate services, and in the event that one or 

more  of  the  individual  services  upon  which  an  aggregate  service  depends  fails,  the 

aggregate service adapts to replace the failed underlying service. 

This section now examines two DASs performing the same function: a desktop e-mail 

client, and both sharing the same source of contextual volatility: different users. The first 

DAS, Fickas et. al.'s Think-and-Link e-mail system [36] was designed to be used by people 

with cognitive impairments due to brain injury. These users will differ greatly from each-

other in ability to use the system, and the ability of each user may also change over time. 

The email system uses adaptation to adjust its interface to cater for different users as they 

use the system, according to profiles of each user's abilities provided by specialist doctors. 

The profiles themselves are created and updated off line, away from the email system. 

Some would argue that the off line creation of user profiles means the adaptation in this 

case is more analogous to maintenance and tuning. However, the email system adapts its 

behaviour when running to suit the differing needs of individual users automatically. Thus 

the  creation  and  updating  of  a  user's  needs  profile  is  more  analogous  to  pre-design 

requirements elicitation.

The second DAS [37], performs a similar task for users without any specific medical 

needs.  Lapouchnian  et.  al's  DAS is  built  using  the  popular  open-source  e-mail  client: 

Thunderbird [38]. The adaptive abilities of this email system are less radical, involving the 
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manipulation of options already present in the e-mail client to suit broadly specified user 

preferences.  A  user's  preferences  are  expressed  in  terms  of  high-level  goals  such  as 

“Prefers  not  to  be  interrupted”  or  the  conflicting  “Likes  to  answer  e-mails  quickly”. 

Models of these high-level goals are transformed into personalised configuration profiles, 

which Thunderbird uses to adapt, parametrically, its behaviour.

Despite the relatively low level of autonomy offered by the two e-mail systems, they 

share a particularly interesting trait. Each system's adaptive behaviour is derived directly 

from specifications of user requirements. The Think-and-Link system's user requirements 

are obtained clinically,  from patients'  doctors,  whereas the second email  system's  user 

requirements are obtained from a high-level model. Each system's adaptive behaviour is 

derived  from  its  requirements  offline,  with  analysts  manually  creating  appropriate 

configurations for individual users. By automating this process, and potentially allowing it 

to be carried out by the DAS itself, there may be an opportunity for greater autonomy. 

This is discussed further in Chapter 6.

Another good example of a DAS that has been built is Hughes et. al.'s GridStix system 

[2]. This DAS takes the form of an intelligent wireless sensor network that monitors the 

river Ribble in North-West England to predict flooding. The GridStix system operates in a 

hostile  environment,  with  a  significant  probability  of  individual  nodes  failing  due  to 

submersion  or  physical  damage  from  water-borne  debris  when  the  river  floods. 

Furthermore, the monitoring location is remote, with battery-backed solar power being 

the only feasible option for powering the GridStix system. The tightly constrained power 

footprint  combined  with  the  expense  in  terms  of  power  of  providing  sufficient  fault 

tolerance  to  allow  the  GridStix  system to  operate  in  an  adverse  environment  and  to 

provide accurate flood predictions means that a delicate balance needs to be struck, with 

different  fault  tolerance  mechanisms  and  flood  prediction  models  used  in  different 

circumstances.  The  GridStix  system  adapts  by  enabling  the  more  power-hungry 

mechanisms as the risk of flooding becomes more severe, and using more power-efficient 

ones at times of little risk. The GridStix system is discussed in more detail in Chapter  7. 
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The GridStix system uses adaptation as a means to mitigate contextual volatility, which 

originates from the river.

GridStix is interesting because the adaptation is both compositional,  and performed 

autonomously. The technology underpinning the GridStix system [39] discussed further in 

the next section, is also fairly generally applicable, posing few restrictions on the type of 

environmental  parameters  that  may  be  monitored,  or  the  structural  elements  of  the 

system that may be adjusted. As a result, the GridStix system is a short conceptual distance 

from  the  general  case,  with  other  domains  easily  imaginable  in  terms  of  different 

monitoring parameters and different software components.

One  final  DAS  that  has  been  proposed,  but  not  yet  implemented  is  Fraunhofer's 

Adaptive  Assisted  Living  (AAL)  system  [40].  The  AAL  system  controls  a  number  of 

components throughout a house, aiming to ensure that the elderly resident is kept healthy 

by ensuring adequate, and appropriate, food and liquid intake, and summoning help in 

case of trouble. The AAL system uses sensors in the fridge to enable it to detect available 

food, sensors in cups to monitor fluid consumption and motion, orientation and pressure 

sensors to detect urgent medical problems. It is clear that in the AAL system, the major 

source of contextual volatility is the resident themself, with it being almost impossible to 

fully  understand  and  predict  the  ways  in  which  the  resident  will  live  their  life  and 

interact with the AAL system. The proposed AAL system has been studied in detail [41], 

by focussing on identifying individual, and often independent, potential adaptations that 

the AAL system could use in different situations to ensure the resident's health. 

The Adaptive Assisted Living system is interesting because of the large, open-ended 

nature  of  the  potential  contextual  volatility.  Any  software  engineering  support  or 

technology on which to base such a system needs to be able to handle a potentially large 

number  of  variations  of  environmental  parameters  and  system  configurations. 

Furthermore, with understanding of the AAL system's environment so incomplete, and 

with it being likely to remain so until well after deployment, the AAL system presents 

challenges  in  terms  of  ease-of-change,  with  flexibility  and  an  ability  to  (re)tailor  the 

system to the resident as its usage changes being of significant advantage.
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2.4 Existing Adaptation Infrastructures

It is perfectly possible, and not uncommon, for a DAS to be created with no formal 

adaptation  infrastructure,  with  the  tasks  of  detecting  contextual  change,  planning 

adaptation  to  suit  and  effecting  the  planned  adaptation  intertwined  with  the  DAS's 

business logic. However, complex compositionally adaptive systems increasingly rely on 

some form of  adaptation infrastructure  dealing with  adaptive  behaviour,  with  varying 

degrees of adaptation and business logic segregation. The greatest segregation is typically 

found in the infrastructures in which the adaptive behaviour is explicitly handled by a 

separate  software  agent  at  run  time.  Approaches  prescribing  the  design  of  a  DAS 

conforming to some logical architecture remove the need for a run-time agent, but do so 

at a cost of removing the clear distinction between adaptive behaviour and business logic 

afforded by the multi-agent approaches. Almost no separation is afforded by approaches 

seeking to add explicit adaptation support to programming languages, either by retrofitting 

existing, or developing new, specialised, languages. Each of these approaches is discussed 

more fully in the following subsections.

2.4.1 Multi-Agent Adaptive Infrastructures

The term “multi-agent  adaptive  infrastructure”  encompasses  any middleware-based 

approach,  in  which the middleware  itself  can be considered an independent  software 

agent  performing  adaptation-related  tasks.  The  term  also  covers  any  broker-based 

infrastructure,  such as  one underpinning many a  service-oriented DAS.  A multi-agent 

adaptive infrastructure typically offers the greatest degree of separation between adaptive 

behaviour and business logic,  and also offers a means to reduce the complexity of the 

adaptation  logic  by  offering  an  existing  agent  capable  of  performing  contextual 

monitoring, adaptation planning and effecting off the shelf (for example, [42]).
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There has already been some research effort on creating service-oriented architectures 

with  support  for  dynamic  adaptation (e.g.  [42],  [43] &  [44]),  most  typically  aiming to 

support  QoS controls  on multimedia  streaming over a  wireless  or  ad-hoc network.  In 

addition,  there  has  also  been  work  to  develop  a  self-managing,  adaptive  content 

distribution  network  that  transcodes  video  &  audio  streams  and  reorganises  itself 

dynamically at  runtime in response to the environment,  and network conditions  [45]. 

Each of these infrastructures offers an agent to effect adaptation, and some provide means 

to  monitor  contextual  change.  None  of  these  service-oriented  architectures,  however, 

offers  support  for  the  planning  of  adaptation.  DAS  developers  using  one  of  these 

architectures  would  still  need  to  develop  code  explicitly  requesting  that  the  broker 

performs a specific adaptation in specific circumstances. This weakness is not inherent to 

service-oriented architectures, with Robinson and Kotonya's service broker performing 

the task autonomously.

There are also a small number of adaptive service-oriented architectures that plan and 

effect adaptation to maintain the availability of an aggregate service amidst the potentially 

shifting  landscape  of  available  underlying  services  [25] [46] [35].  Each  of  these 

infrastructures  refers  to  itself  as  self-healing,  and  is  limited  both  in  domain;  service-

oriented systems, and in purpose; adapting to improve availability. Additionally, there has 

been work  [47] offering an infrastructure to allow a service-oriented system to adapt to 

minor changes in requirements.

There has been significant research into using adaptive middleware for supporting QoS 

in multimedia distributed systems (e.g. [48] [49] [50]). There has also been some research 

effort  [51] on developing adaptive middleware to  support  combat systems such as  self 

guiding  “smart”  bombs  and  automated  intelligence  gathering  aircraft.  Although  the 

architectures differ in the level of support offered for all the identified adaptive behaviour, 

each is domain-specific.

One  of  the  first  examples  of  a  generally  applicable  dynamic  middleware  was 

DynamicTAO [52], which is a CORBA Object Request Broker (ORB) retrofitted with the 

ability  to  utilise  different  strategies  to  support  “concurrency,  request  demultiplexing, 
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scheduling,  and  connection  management”  [52] specified  at  load-time.  Although  this 

behaviour is essentially statically adaptive rather than dynamically adaptive, the work led 

on to UIC-CORBA [53], which allows abstract components to be created at design time, 

specialisations of which are dynamically loaded at runtime. Each infrastructure offers a 

means to effect adaptation, but offers no support for contextual monitoring or adaptation 

planning.

The  OpenCORBA ORB  [54] is  another  CORBA ORB that  allows  proxies  to  select 

remote objects to invoke dynamically according their own logic. This dynamic invocation 

facilitates the swapping of compatible objects at run time. However, as with UIC-CORBA, 

there is no support for contextual monitoring or adaptation planning, 

Lancaster's OpenCOM reflective framework [55] bears similarity in terms of adaptive 

functionality to UIC-CORBA, although it is not a full middleware in itself. OpenCOM is 

more of a component-based programming model, which allows components to be loaded 

and unloaded, bound and rebound at runtime. Essentially, OpenCOM, OpenCORBA and 

UIC-CORBA offer similar means to effect adaptation, with the same lack of support for 

the other aspects of adaptive behaviour.

Built  atop  OpenCOM  is  Gridkit  [39],  a  middleware  designed  for  grid  computing. 

Gridkit is designed to run on a wide variety of devices, from wireless sensor networks 

through to PDAs and desktop computers. Adaptation in Gridkit is achieved by swapping 

out  “Component  Frameworks”  and  thus  individual  components,  in  configurations 

specified in policies written in XML. Crucially, specified in the policies, are also the events 

that  are  to  trigger  adaptation.  Thus,  Gridkit's  adaptation  policies  codify  the  DASs 

adaptation  planning,  reduce  the  complexity  of  contextual  monitoring  to  the  firing  of 

events, and OpenCOM's ability to effect adaptation is extended.

Typically,  a  DAS constructed  using an infrastructure  providing a  distinct  agent  to 

handle adaptation specify the behaviour of the adaptive agent using adaptation  policies  

(e.g. [39] [56] [57] [58]). These policies are written as Event-Condition-Action rules [59], 
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stating that a given adaptation is to be performed when a specific event is raised under 

certain conditions, although a more expressive policy language may emerge in the future.

2.4.2 Architectural Adaptive Infrastructures

Some,  notably  Kramer  and  Magee  [3] argue  that  although adaptive  middleware  is 

helpful in composing a DAS, it lacks generality outside of the distributed systems domain, 

and  that  adding  language  support  for  adaptation  offers  no  abstraction  and  thus  does 

nothing  to  aid  DAS design.  More  general  approaches  make  use  of  a  pre-set,  generic, 

transferable  architecture  separating  different  aspects  of  adaptation  logic  from  the 

application's business logic.

Kramer  and  Magee's  approach  borrows  heavily  from robotic  system architectures, 

following a three tier approach, as depicted in  Figure 1. Each component is expected to 

fine-tune  its  behaviour  at  the  lowest  level,  the  middle  level  implementing adaptation 

based on strategies devised by the upper layer, which uses goal based reasoning.
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It is clear that the architecture in  Figure 1 is well designed for the tasks of planning 

and effecting adaptation. The task of detecting contextual change, however, is seemingly 

left to individual components.  Although individual components may be well placed to 

monitor  their  own performance,  monitoring of  the  environment  as  a  whole,  or  some 

specific aspect thereof, may be better performed at the system level. This approach offers a 

useful template for DAS design, particularly if the system's adaptive behaviour is aimed at 

tuning.

Oreizy  et.  al.  [6] argue  that  a  software  architecture  model  of  the  components, 

connectors, inputs and outputs of a DAS could be used by some sort of adaptive manager 

to plan and effect adaptation. The models are produced specifically for this purpose, and 

are  updated  by  the  DAS's  adaptive  infrastructure  at  run  time.  Although  neither  the 

adaptive manager nor the infrastructure connecting components and updating the model 

have  been  created,  the  use  of  a  model  to  guide  adaptation  offers  the  possibility  of 

separating the tasks of planning and effecting adaptation from the business logic in the 

individual components. It may also be possible to re-use an adaptation manager using this 

approach across domains, if the architectural models used are not too domain specific.

White et. al.  [60] focus on how individual components of a DAS should adapt their 

behaviour in response to established policies and should interact with one-another. They 

also look at how an adaptive infrastructure could allow the individual components, termed 

“elements”, to find, monitor, aggregate, broker and negotiate between themselves. This 

work promotes a more weakly-coupled, less systematic approach than the previous two, 

with even greater control placed in individual components. It is easy to imagine a system 

designed  in  such  a  manner  offering  a  relatively  high  degree  of  autonomy  but, 

unfortunately,  the  level  of  complexity  of  both  the  adaptive  infrastructure  and  the 

components places systems using the architecture out of reach at present.

An  architectural  approach  to  DAS  design  essentially  replaces  a  concrete  adaptive 

infrastructure with a template by which a bespoke one could be designed to suit a specific 

DAS.  Although  an architectural  approach typically  offers  a  good degree  of  separation 

between  the  DAS's  adaptive  behaviour  and its  business  logic,  the  motivating  concern 
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behind the need for separation: explosive complexity, is ignored. A multi-agent adaptive 

infrastructure offers the possibility of agent reuse, allowing the complexity associated with 

adaptive behaviour to be dramatically reduced.  It is  for this reason that we are seeing 

actual DASs created using multi-agent adaptive infrastructures rather than designed to 

abstract architectures.

2.4.3 AI Planning for Adaptation

Several of the adaptive architectures discussed in the previous subsection rely on some 

planning component to plan and devise adaptations to be effected. For example, the “Goal 

Management”  component  in  Figure  1 is  responsible  for  devising change plans  for  the 

“Change Management” component to effect.  AI planners  [61] offer the most promising 

possibility  for  implementing  such  a  planner,  and  could  be  use  outside  of  a  formal 

adaptation infrastructure to plan adaptations in autonomous systems in general.

AI planners typically operate on sets of propositional formulae describing the initial, or 

current, state of the world, some description of a desired state the planner should seek to 

attain, and some description of available actions. The planner's output is a sequence of 

actions, which when executed from the world's initial state will yield the desired state

One notable AI planner is NASA's Livingstone [62], which forms part of NASA's work 

on  so-called  remote  agents  [63],  which  offer  autonomous  control  of  a  spacecraft  for 

extended  periods  of  time  in  a  volatile,  hostile,  space  environment.  Livingstone  uses 

component-based  declarative  models  to  provide  adaptive  capability  to  allow  fault 

diagnosis, recovery and tolerance. Hardware failures aboard spacecraft are common, and a 

successful mission depends on the spacecraft being able to withstand multiple component 

failures, potentially interrelated.

The Livingstone planner depends upon formal models of a spacecraft's systems, and of 

expected behaviour in all valid configurations. Plans are selected from those available on a 

least-cost basis, where cost is expressed in terms of the expenditure of finite resources, for 
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example propulsion fuel, or the use of irreversible actions, for example one-time explode-

shut  valves.  Thus,  the  Livingstone  planner  requires  detailed  knowledge  of  a  DAS's 

expected performance in a given configuration, and of the costs incurred in switching, or 

maintaining a given configuration.  This  thesis'  work concerns the use of requirements 

models for DASs, which may be considerably less complete than the models required by 

Livingstone. However, the ability to select configurations, and suitable adaptation plans to 

transition to a new configuration from a set of those available is conceptually similar to 

the model-driven adaptation discussed in Chapter 6.

2.4.4 Explicit Programming Language Adaptation Support

By adding explicit support for adaptation, a programming language can go some way to 

reducing  the  additional  complexity  involved  with  a  DAS.  Although  the  use  of  an 

adaptation-supporting programming language does not remove the need to explicitly code 

the DAS's adaptive behaviour: detecting contextual change, planning adaptation to suit 

and effecting the planned adaptation, it can reduce the workload associated with one or 

more of these tasks.

Program Control Language, or PCL [64], is a set of language extensions for both C++ 

and Java targeted at allowing application programmers for distributed systems to specify 

both when and how applications should adapt at runtime. The extension provides extra 

language primitives, termed “adaptors” to allow classes to be swapped at runtime, values, 

termed  “metrics”  to  be  monitored  during  execution”  and  events  that  may  trigger 

adaptation. These primitives can be used to reduce the complexity of detecting contextual 

change and of effecting adaptation, but offer little assistance in planning adaptations in 

response to detected contextual change.

Adaptive Java  [65] augments the standard Java language primitives with additional 

keywords to support the observing of runtime behaviour, i.e. introspection, and changing 

this  behaviour,  i.e.  intercession.  The  language  is  targeted  at  adaptive  middleware 
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developers,  much  like  OpenCOM  [55],  differing  with  the  adaptive  functionality 

encapsulated within the language rather than an additional library. The language offers no 

additional support for detecting contextual change or for planning appropriate adaptation. 

It does, however, offer considerable support for effecting said adaptation.

Although  Trap/J  [66] and  Kava  [67] can  be  classed  as  language  support,  they  are 

targeted  at  augmenting  existing  Java  applications  with  adaptive  properties  after 

deployment,  without  modifying  their  source  code.  Although  one  would  expect  this 

“clean”  modification  to  a  Java  class'  source  code  to  require  a  modified  Java  Virtual 

Machine (JVM), each approach adds adaptive capability by selecting classes that are to be 

adaptable at compile time, and uses a special compiler to generate reflective byte code 

associated with the selected classes.  at run time,  interfaces implemented by the newly 

modified,  adaptable  classes  may  be  used  to  modify  system  behaviour.  Of  all  the 

programming language based approaches discussed in this section, this shared approach 

offers the greatest degree of separation of a DAS's adaptive behaviour and business logic. 

The original system remains untouched, with an additional potential adaptive capability 

added at compile time. However, code to detect contextual change, and to plan the newly-

enabled adaptation still needs to be created, external to both processes. As such, despite 

the  relatively  high  degree  of  separation,  Each  of  Trap/J  and  Kava  only  mitigates  the 

additional complexity of effecting adaptation. 

2.5 Chapter Conclusion

Despite the relative complexity of DASs serving to limit their adoption to scenarios in 

which they will yield most benefit, DASs are being created to serve a variety of purposes. 

The domains for  which DASs  are being built  are  characterised by volatile  changeable 

conditions. Different modes of operation are sometimes possible only in some conditions, 

and the relative priority, and expected degree of satisfaction, of requirements varies in 

tandem with the environment. 
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Although  there  have  been  several  (e.g.  [65],  [66] &  [67])  attempts  to  create 

programming languages with built in support for adaptation, there has been little adoption 

of these languages. In a similar vein, there has been little adoption of the several adaptive 

architecture designs proposed (e.g.  [3] & [60] by which DASs could be constructed, and 

adhering  to  one  of  these  architectures  could  be  eased  with  the  use  of  an  adaptive 

programming language.  Instead, the DASs actually being developed (e.g.  [34] &  [2]) are 

using an independent agent to handle adaptation, in the hope that the agent can be re-

used, and to simplify development by separating the concern of adaptive behaviour from 

the DAS's business logic.

Returning to the research aims discussed in Section  1.3, we can see that one of the 

questions this thesis aims to answer is as follows:

To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

Section  2.4.1 discusses the fact that many a multi-agent adaptive infrastructures, or 

more specifically adaptive middleware,  typically utilises  adaptation policies  to codify a 

DAS's  adaptive  behaviour.  It  is  therefore  possible  to  demonstrate  a  link  between  the 

environmental analysis done, and decisions taken for a DAS by showing it  possible to 

derive an appropriate adaptation policy from the analysis.

Despite the emergence of DASs using some form of adaptive infrastructure to handle 

their adaptive behaviour, and the benefit of separating this adaptive complexity from the 

DAS's  business  logic,  the  specification,  design  and  construction  of  DASs  remains 

extremely  difficult.  The  next  chapter  reviews  the  state  of  the  art  of  requirements 

engineering for DASs, which faces a particular challenge in specifying variable or multiple 

behaviours,  when dealing with a complex and potentially incorrectly or only partially 

understood operating environment.
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3 DAS Requirements Modelling & Monitoring

This  chapter  presents  a  somewhat  narrower  literature  review  than  Chapter  2, 

focussing  on  requirements  modelling  and  requirements  monitoring,  two  key  and 

intertwined aspects of DAS research. 

One  of  a  DAS's  defining  characteristics  is  its  ability  to  monitor  the  environment, 

enabling it to adapt its behaviour to better suit the prevailing operating conditions. It is 

not,  however, always possible to monitor the environment directly,  and one source of 

monitoring data may not be sufficient to reliably infer the current status of the operating 

environment. In some cases, it is possible to monitor the degree to which a DAS's key 

requirements  are  being  satisfied,  and  use  this  data  as  a  surrogate  for  more  direct 

environmental knowledge. In addition to this “surrogacy” use of requirements monitoring, 

it can be argued that  [33] fundamentally, all DAS adaptation is motivated by a desire to 

strike  a  balance  between  conflicting  requirements  in  changeable  and  uncertain 

environmental  conditions.  From  this  viewpoint,  requirements  monitoring  becomes  a 

cornerstone of the enabling technology for DASs.

If  so  much of  a  DAS's  behaviour  is  motivated  by  the  need  to  balance  conflicting 

requirements in changeable conditions, then it follows that in order to understand, design 

and build a DAS it is necessary to have a complete understanding of the requirements, and 

what constitutes  an acceptable  balance in  different  conditions.  It  is  this  problem that 

requirements modelling for a DAS aims to address, with a strong consensus emerging that 

goal-based requirements modelling methods are best  suited to  modelling the complex, 

variable systems that attract the DAS moniker.

The  following  subsections  discuss  requirements  modelling  and  requirements 

monitoring in more detail, examining existing work applied to DASs.
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3.1  Requirements Modelling

At the most general level, Berry et. al.'s work studying the type of RE done for (and 

arguably by) DASs separates the types of RE into levels, with the more “meta” RE activity 

done at the higher levels. The work doesn't discuss how each level could be modelled. 

However,  the  level  separation  forms  the  basis  of  the  modelling  method  discussed  in 

Section 3.1.2, and as such is discussed here in preparation.

Berry et. al.'s first level RE resembles the standard practice for non-adaptive systems, 

and  involves  analysing  the  proposed  DAS's  operating  environment,  specifying  the 

functionality  of  the  DAS  as  a  whole,  and  crucially  identifying  all  the  potential 

configurations the DAS may adopt, and analysing the circumstances under which each 

should be adopted. The work terms the individual configurations target systems, and the 

circumstances under which they are to be adopted  domains. For ease of understanding, 

this can be conceptualised as the operating environment being  partitioned into several 

domains, with a target system devised and specified for each.

Second level RE looks at how the DAS should distinguish between domains, and how 

to identify the appropriate target system for each.  If  Level-One RE is concerned with 

individual target systems, and how they are to behave in their given domain, then Level 

Two  RE  is  concerned  with  the  DAS  as  a  whole,  and  how  the  target  systems  are 

amalgamated into the complete system. This is the level at which it can be argued that the 

DAS  itself  is  performing  RE,  but  this  thesis  is  concerned  with  only  the  activity 

undertaken.

Third  level  RE looks  at  how the  Level  Two RE may actually  be  accomplished.  It 

involves specifying the mechanisms by which the data  needed to  distinguish between 

domains  may  be  obtained,  and  the  mechanisms  by  which  a  target  system  deemed 

appropriate may actually  be adopted.  Given that  a  DAS often relies  on some form of 

adaptive infrastructure  to  perform environmental  monitoring and to  effect  adaptation, 
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Level  Three  RE  often  involves  analysis  of  the  capabilities  of  available  adaptive 

infrastructures.

Fourth  level  RE  is  the  furthest  removed  from  DAS  behaviour,  covering  the 

specification,  development  of  and  research  into  adaptation  mechanisms  in  general. 

Typically, the adaptation mechanism developers and the DAS developers will not be the 

same people, and thus the Level Four RE occurs separately from the other three levels.

The majority of the research into DAS modelling focusses on the Level-One modelling 

described above, and sometimes only offers partial coverage for the Level-One RE. For 

example, Morandini et. al.'s work [68]on extending the Tropos [69] methodology  involves 

the creation of goal models to analyse the potential impact of the DAS adopting different 

solution strategies, but doesn't offer any explicit means of modelling the circumstances 

under which each may be preferable. Furthermore, environmental monitoring and the 

mechanism by which different solution strategies are adopted are left completely external 

to  the  modelling  process.  Other  DAS  modelling  approaches  can  be  clustered  by  the 

underlying modelling techniques utilised, with work having been undertaken using both 

the KAOS [70] and i* [71] modelling techniques. The work in each cluster is summarised 

and discussed in Sections 3.1.1 and 3.1.2, respectively.

The research goal identified in Section  1.3 of attempting to derive a DAS's adaptive 

behaviour directly from requirements models may seem distant, but attempts have been 

made to  derive other aspects  of  system behaviour and configuration from goal models 

previously, with some success.  Yu  et.  al. Have shown it possible  [72] to derive feature 

models and component interfaces from generic goal models created using the OpenOME 

modelling tool [73], whilst Letier and van Lamsweerde have developed a method [74] to 

derive operational specifications directly from KAOS goal models. Neither of these two 

pieces of work focus on the derivation of adaptive behaviour from goal models, but do 

show research interest in deriving lower-level artefacts using information contained in 

relatively early-phase, high-level goal models.
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There  has  also  been  some work  looking  into  how best  to  write  the  requirements 

specifications  for  a  DAS.  In  RELAX  [41] prescriptive  and  absolute  modal  verbs  are 

replaced with fuzzier, more malleable statements about the goals the system endeavours to 

fulfil to as great a degree as possible. Requirements in the form of: “The system shall do x  

as early as possible after y” offer a degree of flexibility in how the system chooses to fulfil 

them, and offer the possibility of trading-off less complete fulfilment of one requirement 

for more complete fulfilment of one or more others.  The approach is  underpinned by 

formal  semantics,  essentially  bridging  between  precise  formalisms  and high-level  goal 

modelling This approach is useful for recording requirements that the system as a whole 

attempts to best fulfil, and may also be useful for describing adaptive behaviour. However, 

if it is possible to derive a DAS's adaptive behaviour directly from models created earlier 

during the RE process, this description may be unnecessary.

There has been some work that seeks to allow requirements models that encompass 

estimated values for non-functional properties to be updated at run time with observed 

values from a DAS [75]. Unusually, [75] uses Discrete Time Markov Chains (DTMCs) [76] 

as  the  requirements  model,  and  the  functional  properties  being  monitored  apply  to 

service-oriented systems. The work mentions the possibility of a DAS reconfiguring itself 

in response to  changes in the model which,  if  exploited,  would yield a  model-Driven 

Adaptive System (m-DAS), as discussed in Chapter 6.

Goal-based requirements modelling methods are attractive for DAS modelling, because 

of  their  inherent  ability  to  reason about  alternate  means  of  satisfaction for  individual 

goals, and the ability to reason about different ways of breaking down, or operationalising, 

high-level  goals  into  more  precise,  lower-level  goals,  which would  typically  illustrate 

different  solution  strategies.  This  natural  ability  to  analyse  several  different  possible 

solutions lends itself well to a DAS, which may well adopt several of the possible solutions 

in different circumstances. 
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3.1.1 KAOS-based DAS Modelling

KAOS  [70] is  a  structured,  goal-based  requirements  modelling  method,  that  pays 

particular  attention  to  softgoals.  Softgoals  are  often  early  manifestations  of  Non-

Functional Requirements (NFRs), which are often overlooked in other formalisms. NFRs 

are particularly important for a DAS, given (as  argued in  [33]) that striking a balance 

between conflicting NFRs in a variable environmental conditions is a key driver in the 

decision to create a DAS over a non-adaptive system.

KAOS has a relatively well defined formalism, covering goals, softgoals, and domain 

assumptions which will prove an advantage in performing model analysis and derivation. 

The notion of obstacle modelling, which promotes reasoning about potential pitfalls and 

impediments  to  goal  satisfaction  could  also  prove  useful  in  modelling  foreseen 

environmental uncertainty, and in identifying areas in which uncertainty exists. However, 

the  role  of  formalism  in  KAOS  also  hampers  the  process  of  changing  models  as 

understanding improves, by requiring change at both the model and formal level. Given 

the complexity of the environments for which DASs prove most useful, and the likelihood 

of inaccuracies and incompleteness in and of the understanding of the environment,  a 

significant  workload  in  making  model  changes  amounts  to  a  substantial  limitation. 

Incomplete  knowledge of  the environment  also  serves to  limit  the  benefit  of  obstacle 

modelling, given that the impact only of (at least partially) foreseen obstacles may ever be 

analysed.

There has been some work [77] [78] looking at ways in which individual adaptations 

could be represented using KAOS, with Brown et. al. adding an additional linear temporal 

logic  (LTL)  operator  to  the  KAOS  formalism  to  explicitly  capture  a  change  in  the 

requirements a DAS is to satisfy. The work builds upon earlier work [79] in establishing 

LTL patterns for common adaptations (such as one-point adaptation, where one target 

system stops execution, transfers state and a second target system commences execution), 

with  [77] essentially  incorporating  the  patterns  into  KAOS  models.  Although  the 

possibility  of  deriving a  DAS's  adaptive  behaviour  (the  concern of  switching between 
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behaviours in appropriate contexts) from the created goal models is identified, no method 

to do so has been developed, with the work's focus being the specification of adaptive 

behaviour. This work is unusual in focussing solely on the second level RE (as mentioned 

in Section 3.1), with Level-One RE performed on a per-target system basis external to the 

process.

There has been some work  [80] also into the derivation of architecture models for a 

DAS directly from KAOS goal models. The work explicitly highlights goal conflicts as the 

motivator  for  adaptation  (as  in  [33]), but  unlike  Brown  et.  al.  [77] omits  support  for 

representing a DAS's adaptive behaviour,  focussing instead on deriving an architecture 

that would support adaptive behaviour specified and created elsewhere. Furthermore, the 

generated architecture model omits one of the crucial tasks in Level-One RE: analysis of 

what behaviour should be adopted under which conditions. This prevents the work from 

being  combined  with  the  previously  discussed  adaptation  modelling  to  allow s  DAS's 

adaptive behaviour to be derived from a set of KAOS goal models. 

Finally, there has been some work seeking to add support for reasoning about partially 

satisfied  softgoals  to  KAOS  [81]. In  practice,  the  softgoals  that  may  only  be  partially 

satisfied are goal-modelling representations of NFRs, for which it is difficult to establish 

solid  satisfaction  criteria.  This  work  is  important,  as  DASs  typically  operate  in 

environments that prohibit the complete satisfaction of all the DAS's goals, - and volatility 

in the environment prevents a single acceptable balance between them from being struck. 

The  work  proposes  that  domain-specific  objective  measures  of  goal  satisfaction  are 

proposed, and when deciding between different candidate goal satisfaction strategies,  a 

quantitative analysis of the options is performed using stochastically modelled, typical or 

estimated data to reach a decision. Of course, the accuracy of the method is limited by the 

accuracy of the underlying data, but the work does note that it may be possible to monitor 

the data, and in a DAS it may be possible to adopt an alternate candidate if analysis of 

actual measured data no longer supports the adopted goal satisfaction strategy.

To  conclude,  although  there  hasn't  to  date  been  any  all-encompassing  work  in 

modelling  a  DAS  completely  in  KAOS,  there  has  been  a  significant  amount  of  work 
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looking to model specific aspects of a DAS's behaviour. The behaviour of individual target 

systems has been modelled in  [80]with adaptations between target systems modelled in 

[77].  DAS  modelling  support  could  be  enhanced  by  including  the  partial  satisfaction 

reasoning method introduced in  [81],  allowing balanced “best  fit”  configurations to be 

designed  for  different  target  systems  in  each  domains.  There  is  also  a  possibility  of 

designing a DAS with greater autonomy by granting it the ability to monitor the data 

supporting the selection of “best fit” configurations, and re-making the selections in the 

event of the data being demonstrably incorrect at run time.

3.1.2 i*-based DAS Modelling

i*  [71] (pronounced I-star,  and meaning “distributed intentionality”) is  a  goal-based 

and  agent-oriented  graphical  modelling  methodology  aimed  at  supporting  high-level 

reasoning  during  early-phase  requirements  engineering.  There  are  several  related 

methodologies that extend or specialise i* for specific purposes, all (like i*) created at the 

University  of  Toronto,  for  example:  GRL  [82] and  Tropos  [83].  By  allowing  a  more 

complete means of modelling, understanding and reasoning with the DAS, its constituent 

parts and the environment  in situ,  i* seeks to enable thorough exploration of potential 

solutions, and their potential consequences of their selection. There are two types of i* 

model: Strategic Dependency (SD) and Strategic Rationale (SR). The two models are used 

for slightly different tasks

In SD models, systems are modelled in terms of agents, goals and dependencies, with 

models offering a high-level view of which parts of a (socio-technical) system depend on 

which others to function.  In i*  terminology, an agent is either a human or automated 

system component, a goal is something an agent seeks to achieve, and a dependency runs 

from  one  agent  (the  depender)  to  another  (the  dependee)  via  the  subject  of  the 

dependency (the dependum). There are other elements that may appear on SD models, for 

a full description see [71]. 
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In SR models,  the rationale behind a goal  satisfaction strategy may be analysed in 

terms of tasks, softgoals  and contributions. A task may be decomposed into one or more 

sub-tasks, and tasks also serve a means to satisfy goals, when attached via a  means-end 

link.  Softgoals  are  an  important  concept,  representing  a  goal  with  no  clearly  defined 

satisfaction criteria: essentially an early representation of an NFR. The completion of a 

specific task may have one or more impacts on softgoals, captured with contribution links. 

There are several different types of contribution link corresponding with the magnitude 

and polarity of the captured impact. Selection of one task over another (that satisfies the 

same goal) implies an acceptance of, or at least a preference for, its softgoal impact(s).

There have been several general-purpose i* modelling tools developed [84] [85], which 

ease in the construction and validation of a SD or SR model. Some tools offer some limited 

support for reasoning with a finished model, and this tool support can be leveraged to ease 

requirements modelling for a DAS, as much as any other class of system.

There has been some work  [86] [16] looking to model DASs using i*.  The LoREM 

process advocates creating i* models embodying the level 1-3 RE (according to the levels 

defined in  [10]) described in Section  3.1, allowing analysts to study a DAS as a whole, 

reason  about  the  configurations  of  each  target  system,  understand  the  adaptations 

involved in switching between target systems, and to understand what is required of the 

adaptive  infrastructure  underpinning  the  DAS.  The  models  created  at  each  level  are 

discussed below:

At Level  One,  the method involves creating an SD model of the DAS as  a whole, 

illustrating the DAS in context, showing how it fits in with the environment, and which 

stakeholders depend on the DAS to do what. Also at Level One, an SR model is created of 

each individual  target  system,  showing the  configuration the DAS adopts  and how it 

balances conflicting softgoals in each domain. There has been additional work  [87] [88] 

augmenting these Level-One SR models with  claims, which were first seen in the NFR 

framework  [89]. Claims  make  explicit  the  rationale  behind  a  decision,  with  finer 

granularity than simply recording a series of softgoal priorities in each domain. The use of 

claims is discussed further in Sections 4.2.1 and 4.2.2.
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At Level Two, the method involves creating an SR model of each valid transition from 

one target system to another. The model shows how the DAS' environmental monitoring 

mechanism,  the  decision  making  mechanism  and  the  adaptation  mechanism  work 

together to achieve a specific adaptation, and shows the circumstances under which the 

adaptation will be made.

At Level Three, the method involves creating an SR model of each of one or more 

prospective  adaptive  infrastructures  for  the  DAS.  The  DAS  depends  on  the  adaptive 

infrastructure  to  provide  the monitoring mechanism,  decision making mechanism and 

adaptation mechanism referenced in the Level-Two models, and it is here that these are 

analysed. Each adaptive infrastructure will have different abilities to fulfil these roles, and 

the choice of adaptive infrastructure could have far-reaching implications. At present, the 

relatively small number of available adaptive infrastructures tends to mean that a DAS is 

envisaged with a particular adaptive infrastructure in mind: in this case, the model serves 

as a means to reason about the limitations imposed by this choice. With a more developed 

ecosystem,  the  utility  of  the  Level  Three  modelling  will  be  in  comparing  different 

prospective adaptive infrastructures.

There has been some work  [90] also attempting to derive requirements from i*  SD 

models. By observing patterns in the dependencies between actors, it is possible to derive 

(candidate) textual requirements for the dependee to fulfil the dependency, and for the 

depender to expect the dependee to do so. In addition, some NFRs can be generated in 

some circumstances, typically accuracy and timeliness NFRs in  [90] – with the type of 

requirements generated reflecting on the air traffic control domain used as case study. It 

may be possible to generate other types of NFR in domains in which they feature more 

prominently.  The  derivation  in  this  work  [90] is  performed  manually,  although 

automation is suggested.

Finally, there has been some work  [91] looking to derive use cases directly from i* 

models. Although this thesis is concerned with deriving adaptive behaviour from models 

rather than use cases,  Maiden  et.  al. [90] and Santander  et.  al. [91] show that there is 

research interest in using i* models as a source to derive lower level artefacts from.
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To conclude, there is already some notable work  [86] that uses i* as a basis for DAS 

modelling, with the combination of goal and agent orientation considered useful for high 

level reasoning during early-phase RE. There is also some research interest  [91] [90] in 

deriving lower level artefacts from i* models, as suggested with respect to deriving a DAS's 

adaptive behaviour in Section 1.5.

3.2 Requirements Monitoring

Requirements monitoring is the recording and gathering of information from which it 

can be determined the degree to which a system is meeting its requirements [30]. This is a 

key ability,  underpinning the capability  of  a  DAS to  tailor  its  behaviour  to  a  volatile 

environment. It is the ability to identify that the current system configuration isn't fully 

meeting  the  requirements,  along  with  the  ability  to  identify  a  closer  to  optimal 

configuration that allows adaptation to occur. Even when the possibility of performing 

requirements monitoring was first raised, the idea of “realigning” the system in response 

to the monitoring data was floated and it is arguable that this idea represents the origin of 

the DAS as a class of system.

Feather et. al. [92]envisaged systems that monitor their requirements satisfaction, and 

adopt an alternate goal satisfaction strategy in the event of the system failing to satisfy one 

or more requirements. In this work, the goals and satisfaction strategies were modelled 

using KAOS, with code to monitor system performance being created, and gathered data 

analysed  to  establish  whether  reconfiguration  is  necessary.  Although  the  behaviour 

described  is  clearly  similar  to  (and  a  subset  of)  DAS  behaviour,  there  are  some  key 

differences. These are discussed in the following paragraphs.

 Firstly, the systems described by Feather  et.  al. don't posses any knowledge of their 

operating environment, and don't seek to detect changes in the environment. A failure to 

satisfy a requirement could be caused by an unexpected change in the environment, a 

deficiency in the system design, or a system fault; all are treated identically. The authors 
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do, however, note that the system's inability to meet its requirements as expected could 

indicate that the system is being used outside of its designed operational envelope.

Secondly,  the  systems  described  by  Feather  et.  al. have  no  knowledge  of  which 

potential alternate configuration is likely to perform best in any given scenario: the work 

describes systems that have just one alternate configuration, and it is assumed that this 

configuration will better suit all circumstances in which the first proves inadequate.

Combined, these leave the systems described by Feather et. al. possessing only some of 

the adaptive capabilities assumed of a DAS. Essentially, the described systems are a DAS 

operating  in  only  two  domains:  expected  and  unexpected.  The  DAS  adopts  a  fixed 

configuration in the expected domain, and any inability to meet its requirements is taken 

to mean a switch to the unexpected domain, in which a second configuration is used. A 

useful analogy to this style of DAS is the “Limp Home” mode seen in automotive systems, 

which allows automobiles to function sufficiently to get to a garage (or to get home) even 

in the event of a fault.

The tricky decision of identifying requirements that the system could benefit  from 

monitoring  is  addressed  by  Robinson  [93],  who  focusses  on  monitoring  obstacles at 

runtime. Obstacles are part of the KAOS ontology, and represent a condition that prevents 

or hinders the satisfaction of a goal. For example, someone's efforts to clean their windows 

may be hindered by the unavailability of hot water, thus their “Clean Window” goal faces 

a potential obstacle of “No Hot Water”. The KAOS research community have worked on 

the issues of the identification of, and reasoning with, obstacles [94], and Robinson argues 

that it is the presence of these obstacles that should be monitored either directly or via 

some surrogate property. 

Robinson's work focusses on monitoring aggregate web services,  which the authors 

correctly argue offer  the possibility of reconfiguring to use a  different combination of 

underlying  services  in  response  to  the  presence  of  an obstacle.  Such a  system would 

certainly be classified as a DAS, with the configuration adopted in the presence of each 

combination of obstacles (including the scenario without obstacles) being equivalent to a 
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target  system,  and snapshots  of  the  operating environment  with  each combination  of 

obstacles being equivalent to domains. A related and more general approach is presented 

by Robinson [95], which applies the same concepts to traditional, non-adaptive systems.

The main weakness of the obstacle-driven process is that only those obstacles foreseen 

and monitored for can be analysed and have a configuration devised for. Although the 

problem can be mitigated using very broad obstacles that cover several different problem 

scenarios.  The use of broad obstacles may be beneficial,  given that careful grouping of 

specific obstacles under broader obstacles on the goal model could yield a reduction in the 

number of target systems that need to be created. However, there will always be a risk of 

an unforeseen obstacle preventing a goal being satisfied, and that the system will have no 

means of recovery.

Building  upon  the  requirements  monitoring  literature  are  the  related  areas  of 

requirements  reflection  [96] and  requirements-aware  systems  [97]. Requirements 

reflection proposes requirements that can be represented at run time, and the satisfaction 

of  which  can  be  monitored  directly  rather  than  via  some  surrogate  property.  A 

requirements-aware system is a system that maintains some run-time representation of its 

own requirements, in order to reason with them (and trade-off conflicting requirements) 

in changeable contexts at run time, using self-adaptation as the means to effect changes 

identified as appropriate by the reasoning. The use of a requirements model at run time as 

suggested in Chapter  6 is  one method by which a system could achieve requirements 

awareness, or be considered to be reflecting upon its requirements.

To conclude, requirements monitoring is a key enabling technology, underpinning the 

ability to create DASs, with the requirements monitoring literature  [30] [93] identifying 

adaptation as a key potential benefit of runtime monitoring. There is a strong consensus 

that the use of goal  modelling allows the need for,  and consequences of requirements 

monitoring to be analysed, with several KAOS-based modelling approaches being devised 

[77] [80]. The  goal-based  approaches  proposed  each  use  obstacle  analysis  to  identify 

properties to monitor, with the presence of obstacles being monitored in lieu of some 

direct satisfaction metric for a specific requirement. Obstacle monitoring trades a fine-
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grained  ability  to  analyse  specific  “what  if?”  scenarios  with  the  ability  to  react  to 

unforeseen  problems  in  satisfying  requirements.  By  monitoring  other  environmental 

properties, it may be possible to better adapt to less foreseeable conditions.

3.3 Chapter Conclusion

There is a strong research consensus that identifying and striking balances between 

conflicting requirements is a key feature for any DASs, with Berry et. al. [10] going so far 

as  to argue that  a DAS itself  is  performing some form of RE at runtime. At the very 

minimum,  a  DAS  is  reasoning  with,  and  adjusting  its  ability  to  satisfy  different 

requirements, if not monitoring them either directly or indirectly [92]  [93]. Despite RE's 

crucial role in supporting DASs, RE support for creating DASs is limited, and a need to 

improve  RE support  for  DASs  has  been  identified  as  a  notable  research challenge  by 

Cheng & Atlee [9].

There is also a strong consensus that goal-based requirements modelling is well suited 

to DAS RE activity, given the inherent ability to reason about alternative decision choices. 

This ability is particularly useful for DASs, which may well adopt each of the alternative 

choices in certain circumstances, as opposed to non-adaptive systems for which a decision 

would be made during the specification process, and only ever revisited in performing 

maintenance. As such, there has been a significant amount of research effort looking at 

the use of goal-based requirements modelling for DASs  [77] [80] [86]. Some techniques 

focus on modelling potential  adaptations,  and scenarios  for their  use individually (e.g. 

[77]), whilst some package several adaptations into a balanced strategy for a foreseen set of 

environmental conditions (e.g. [86]).

One of the research questions raised in Section 1.3 is:

How can a system be designed with a greater degree of autonomy than current

state-of-the-art DASs, and is the extra autonomy useful?
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There appears to be a limitation in some of the goal modelling techniques used to 

model DASs, perhaps dating back to the modelling performed in requirements monitoring 

literature [92] [93]. Techniques based around an obstacle-modelling paradigm are limited 

to  analysis  only  of  known  and  foreseen  obstacles.  Techniques  based  around  domain 

partitioning face a related problem, in that they are limited to analysis only of known sets 

of environmental conditions (or combinations of monitored environmental properties). To 

offer a DAS with a greater degree of autonomy, it will be necessary to at least partially 

overcome one of these limitations. 

Several  pieces  of  the  surveyed literature  [92] [30] raise  the  possibility  of  a  system 

notifying stakeholders that it  is  operating outside of its designed operational envelope. 

However, save for the recent requirements-aware systems literature  [97], there is little 

discussion of actually taking action in such circumstances. DASs offer the possibility of 

taking corrective action when encountering an unforeseen environmental condition, be it 

characterised  as  an unidentified  obstacle,  as  a  faulty  assumption,  or  as  an unexpected 

combination  of  individually  foreseen  conditions.  Furthermore,  the  chance  of  such  a 

situation arising is significant, given the complexity and relatively uncertain nature of the 

environments for which DASs prove most beneficial. As such, this thesis seeks to go some 

way  towards  demonstrating  how  a  DAS  can  adapt  when  faced  with  unforeseen 

environmental conditions.

At this stage,  it  is  clear that some form of goal  modelling would be useful  for the 

research, in that, with suitable extension, it would be possible to use goal models to record 

assumptions made and decisions taken, and offer sufficient traceability to later identify 

those  that  combine  to  specify  the  DAS's  adaptive  behaviour.  Furthermore,  it  may be 

possible for a DAS to reason with a goal model at run time to guide its adaptation. It is also 

clear that extending some of the existing work modelling DAS requirements with either 

KAOS [70] or i*  [71] would be appropriate. The potential benefits of each technique are 

discussed in the following paragraphs.

Using  the  KAOS-based  technique  [80] would  bring  with  it  KAOS's  well  defined 

formalism, which may offer a more direct approach to offer a run-time representation of a 
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requirements  model.  [80] also  offers  the  useful  obstacle  modelling activity,  for  which 

there is no equivalent in [86]. However, the level of integration of formalism in KAOS is 

also something of a concern, given the likelihood of models undergoing potentially rapid 

and iterative change during the RE process due to the relatively poor understanding of 

typical  DAS  operating  environments.  Maintaining  accurate,  verified,  and  up-to-date 

formal  models  of  a  DAS's  expected  behaviour  during  early-phase  RE  could  prove 

burdensome,  and the models  constructed  are  relatively  complex,  given KAOS'  lack of 

built-in agent orientation, which provides a useful means of abstracting over individual 

DAS configurations by declaring the DAS in a specific configuration to be an agent.

The  i*-based  technique  [86] [16],  however,  uses  the  domain and  target  system 

abstraction [10], which offers a compelling divide-and-conquer approach to mitigating the 

problem of DAS complexity. The agent-orientation of i* as well as bringing with it the 

benefits discussed in the previous paragraph, also offers a convenient way of separating the 

concerns  and  behaviour  of  DAS  adaptive  infrastructure  from  the  DAS's  adaptive 

behaviour,  and  from  the  system's  business  logic.  The  substantial  tool  support  for  i* 

modelling in general is also beneficial, limiting the task of providing tool support to one of 

extension  rather  than  creation.  The  limited  formalism  support  in  i*  hinders  model-

derivation and run-time representation type activity, and existing work modelling DAS 

behaviour in i* is a little less mature than with KAOS.

The  domain  and  target  system paradigm used  in  [86],  and  first  discussed  in  [10], 

combined  with  the  agent  orientation  of  i*,  offers  the  possibility  of  better  limiting 

modelling complexity than does the KAOS support, and it is this ability to limit modelling 

complexity that has underpinned the decision to extend the i*-based process to address 

this thesis's research questions.

Starting with the next chapter, this thesis presents its contributions, starting with a 

detailed  look  at  the  extended  [86] process,  better  supporting  ease-of-change  through 

improved traceability, and discussion of how the models can be used to derive adaptive 

behaviour, and how a DAS can achieve greater autonomy by itself using the models. 
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4 ReAssuRE Modelling for DASs

The ReAssuRE modelling process centres around the recording of assumptions made 

during the requirements modelling process, as eluded to by the full name: Recording of 

Assumptions in RE. The LoREM [16] modelling process that the work extends, and i* in 

general provides no means of recording the decisions made during the modelling process, 

which is  to  some extent  supported  in  KAOS  [70].  By  recording  assumptions  on DAS 

models,  it  becomes  possible  to  revisit  them  in  light  of  changed  information  or  new 

understanding as necessary. This revisiting of previously made decisions can be by humans 

later in the RE process, or potentially by the DAS itself at runtime.

This chapter details the ReAssuRE modelling process, focussing on the improvements 

made  over  LoREM  [16],  and  how  the  improvements  offer  the  possibility  of  a  DAS 

operating with a greater degree of autonomy. The chapter discusses modelling at Levels 

One and Two of the levels of RE for DASs identified in  [10], with these first two levels 

covering the adaptive behaviour of DASs. The chapter discusses benefits, drawbacks and 

limitations before drawing its conclusion.

4.1 The LoREM Process

The ReAssuRE process is based on the existing LoREM modelling method [16]. To aid 

in understanding how ReAssuRE models are created, used and how the ReAssuRE process 

itself fits in with a wider requirements engineering program, this section describes and 

discusses the underlying LoREM process.

The  environment  in  which  a  DAS-to-be  is  to  operate  is  partitioned  into  distinct 

domains. This partitioning is no easy task, with individual domains needing to be foreseen, 

with identifiable characteristics found to enable the DAS to identify the prevailing domain 

in all circumstances. Errors made during this process are amongst the most difficult to 
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rectify,  requiring  potentially  multiple  new  target  systems  to  be  devised,  or  if  border 

conditions were incorrectly set, multiple target system designs to be revised.

Suitable environmental partitioning is characterised by a finite number of domains 

being  identified,  each  with  monitorable  conditions  attached.  The  detection  of  an 

individual domain's monitorable condition(s)  signalling its prevalence. Furthermore, an 

understanding of the way the environment will change between domains is required: can 

some domains only be arrived at before or after another? At what measured value can it be 

said the environment has changed from one domain to another? The results of this domain 

partitioning are not recorded explicitly in model form, although it could conceivably be 

beneficial to record them in a state diagram, for example.

LoREM  modelling  is  not  appropriate  for  systems  and  operating  environments  for 

which this is impossible, and once this partitioning has been achieved the LoREM process 

dictates  the  modelling  of  a  target  system for  each  identified  domain.  This  modelling 

features little variability, with an individual target system specified to operate in a single 

steady domain. Decisions as to which individual configuration options, either the selection 

of components or their configuration, are used for an individual target system are taken 

before the overall configuration is recorded in a model. This modelling activity is referred 

to as level-one modelling.

Level-two  modelling  concerns  the  transitions  between  specified  target  systems, 

specifying  the  monitored  condition  that  triggers  the  need  to  adapt,  as  well  as  the 

reconfigurations performed as part of the adaptation. This modelling activity relies on the 

border conditions identified during partitioning,  and on the specification of individual 

target systems recorded during Level One modelling.

Level three modelling is essentially modelling of the requirements for an adaptation 

infrastructure  to  allow  the  environmental  monitoring  and  target  system  transitions 

described by the Level-Two models to be performed. This modelling activity relies on 

knowledge of the monitoring and reconfiguration capabilities described in the Level Two 

models.
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Although the literature on which LoREM is based [10] describes a fourth level of RE 

performed for DASs, this covers research on adaptation mechanisms in general. Modelling 

this type of abstract, generalised RE activity is of little value to an individual DAS, and 

thus no modelling activity is associated with this Level Four RE in LoREM.

To conclude, LoREM can best be thought of as a series of modelling perspectives from 

which a DAS-to-be is viewed. Although the reference to individual perspectives as “levels” 

could be thought to imply an increasing level of abstraction, this is not the case. Level-two 

modelling  explores  the  requirements  for  transitioning  between  the  target  systems 

modelled at Level One. Level-three modelling, in turn, explores the requirements posed 

by the activity modelled at Level Two. The ReAssuRE modelling process improves upon 

LoREM at Level One and two to provide richer tracing information which can be used 

later in the requirements and software engineering processes, or by the DAS itself at run 

time.  The  improvements  made  at  Level  One  and  two  are  discussed,  in  turn,  in  the 

following sections.

4.2 Level One Modelling

The existing LoREM process [16] requires an i* Strategic Dependency (SD) model to be 

created  for  the  DAS as  a  whole.  Additionally,  an  i*  Strategic  Rationale  (SR)  model  is 

created for each of a DAS's target systems, showing the configuration adopted in each 

domain,  how the prescribed configuration satisfies  the  DAS's  goals,  and the extent  to 

which the  configuration satisfies  the  DAS's  softgoals.  From a  tracing  perspective,  this 

provides only limited information in the event that the decisions need to be re-examined 

later in the RE process. Figure 2 and Figure 3 show a Level-One LoREM SD model of an 

adaptive image viewer, and an SR model of an individual target system, respectively. The 

adaptive image viewer was first described in [14]. 
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The adaptive image viewer is used here, and throughout the chapter as a simple DAS 

to illustrate the concepts being discussed. The adaptive image viewer is an application 
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designed to display images to a user, loaded from a networked file store. The adaptive 

image viewer uses adaptation to balance two conflicting concerns: the desire to minimise 

memory usage,  and the desire to maximise the speed at which images are loaded and 

displayed. The DAS's only adaptive capability is to enable or disable a file cache, which 

pre-loads  images  in  an  attempt  to  improve  image  loading  speed,  at  the  expense  of 

significantly higher memory consumption.

The Level-One SD model depicted in Figure 2 shows a high level view of the actors, 

goals and dependencies in the adaptive image viewer. An overview of the syntax of SD 

models is included on page 38. In this simple DAS, a user depends on the adaptive image 

viewer to display images, and to do so as quickly as possible whilst using as little memory 

as possible. 

Figure 2 also depicts the DAS's two target systems, which reflects the DAS's operating 

environment having been partitioned into two domains: low latency (referred to as D1) 

and high latency (referred to as D2).  The low latency domain is characterised by good 

network performance, which means that the delay encountered when loading images will 

be  negligible.  Conversely,  the  high  latency  domain  is  characterised  by  poor  network 

performance, which introduces a noticeable delay. For each of these domains, a separate 

target system is devised, specified and created. The S1 target system is tailored to the D1 

domain, and S2 for D2.

Figure  3 shows  the  LoREM  Level-One  model  for  the  S2 target  system,  which  is 

intended to operate in the D2 domain. The DAS's goal is to “Display Images”, which can be 

satisfied by completing the task: “Render Image Data”. The “Render Image Data” task can 

be decomposed into: “Decode Data” and “Load Data”. In the S2 target system, the “Load 

Data” goal is achieved by completing the “Use Cache” task, indicating the use of the file 

cache in domain D2.

Given the likelihood of DAS' requirements models needing to be changed throughout 

the  RE  process,  as  a  result  of  uncertainty  in  and  about  the  operating  environment, 

ReAssuRE seeks to offer improved traceability in DAS requirements models. Looking at 
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Figure 3, it is possible to infer that a decision has been taken to require the adaptive image 

viewer to use a cache when operating in the D2 domain, and that using the cache improves 

the  perceived  speed  of  the  adaptive  image  viewer  whilst  increasing  memory  usage. 

However,  it  isn't  necessarily  possible  to  revisit  the  decision at  a  later  date:  there's  no 

record  of  the alternatives considered,  or  what their  expected impacts  on the softgoals 

would be. In order to offer this kind of backwards traceability, it  will  be necessary to 

record several things on the Level-One model:

1. The alternative goal satisfaction strategies considered

2. Their impact on the DAS's softgoals

3. The decision reached

4. The rationale behind the decision

Recording the alternative goal satisfaction strategies considered is merely a matter of 

adding additional tasks representing the rejected alternatives to the model. The rejected 

alternatives'  impacts  on  the  DAS's  softgoals  can  be  captured  in  the  same  way  as  the 

impacts currently recorded: using standard i* contribution links. The reached decision can 

be highlighted visually on the task representing the selected alternative. Recording the 

rationale behind the decision, however, is a somewhat trickier task. This thesis presents 

the idea of using  claims  to record this decision rationale, and it is this concept that is 

discussed in the next section.

4.2.1 Recording Rationale with Claims

One of this thesis' contributions is the addition of  claims to i* models as a means to 

record the rationale behind a decision as well as its outcome, along with recording the 

alternatives  considered.  The  availability  of  this  information  improves  traceability  and 
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allows decisions to be re-taken later in the RE process, or possibly even by a DAS itself at 

run time. Claims are not a new concept: they formed part of the NFR framework [89], on 

which i* is itself based. 

 In the NFR framework  [89], claims could be used for two purposes:  to argue the 

rationale behind an individual decision, or to support a softgoal prioritisation that can 

affect multiple decisions. The second use, softgoal prioritisation, has an equivalent in the 

related GRL ontology [98], but it is the first type of use that this thesis advocates for DASs. 

The use of claims to improve traceability in DAS models has been published in [87].

There is a related concept in the i* ontology, called a belief. A belief is something an 

actor in the system holds to be at least partially true, and like a claim it can be used to 

affect a softgoal or contribution link. The principal difference between a claim and a belief 

is  that  a  claim is  presumed true by the analyst  whilst  a  belief  is  not.  There  is  also  a 

syntactic difference, in that a Task may exert influence over a belief via a contribution 

link, (or rather, the degree to which an actor holds the belief to be true).

Claims are used in two different types of model during the ReAssuRE process: in the 

Level-One SR models created for each of a DAS's target systems, and in so-called Claim 

Refinement Models (as introduced by the NFR framework  [89]) to examine the basis of 

assumptions. Returning to the Adaptive Image Viewer example discussed earlier in the 

chapter,  Figure 4 shows the Level-One SR model for the same S2 target system that was 

depicted in Figure 3 on page 50. Unlike Figure 3,  Figure 4 shows both of the alternative 

satisfaction  strategies  for  the  “Load  Data”  goal  considered,  shows  which  strategy  was 

selected (“Use Cache”) and uses a claim to record a brief representation of the rationale 

behind the decision.
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The claim “Extra Speed Needed In S2”, represented by a cloud-like shape in Figure 4, 

uses  a  make contribution link,  to  assert  the  importance of  the  help contribution link 

running from the “Use Cache” task to the 'Maximise Speed' softgoal. Given the importance 

of this positive contribution, the “Use Cache” goal satisfaction strategy is selected over the 

“Don't use Cache” strategy. The claim breaks the apparent deadlock in the contribution 

links on the model, asserting that the extra speed gained by using the cache is of greater 

importance than the memory saved in its absence.

The  same  rationale  can  be  similarly  represented  using  a  claim  that  breaks a 

contribution link on the model, as depicted in Figure 5. The contribution link used affects 

the phrasing of the claim needed to convey the decision rationale, and in some cases the 

accuracy  and  ease-of-understanding  of  the  rationale  recorded  will  differ  between 

notations. In this instance, the rationale expressed by the claim in Figure 4 is clearer.
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In this example, there is little difference between the two notations. However, the 

type of contribution link a claim uses, and the polarity of the contribution link to which 

the  claim is  attached  can  affect  the  claim's  meaning  on more  complex  models.  Some 

combinations of claims' contribution links and the links to which they are attached can be 

described as inclusive and some exclusive, as represented on the table below:

Claim Contribution Type Attached Link Polarity Description

Make Positive Inclusive

Make Negative Exclusive

Break Positive Exclusive

Break Negative Inclusive

Table 1: Claim Contribution and Attached Link Inclusiveness

The combinations in  Table 1 described as “Inclusive” have the effect of making the 

task  the  “attached”  contribution  link  relates  to  more  likely  to  be  selected,  and  those 
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described  as  “Exclusive”  lead  to  the  task  being  wholly  or  partly  removed  from 

consideration. Inclusive claims are used to argue that a positive contribution is important 

or necessary, or a negative contribution is insignificant. Exclusive claims argue a positive 

contribution  is  insignificant  or  unnecessary,  or  that  a  negative  contribution  poses  an 

insurmountable problem. Using an inclusive notation allows the decision rationale to be 

recorded with one claim, whereas exclusive combinations will require a claim to exclude 

each  rejected  strategy.  For  decisions  with  more  than  two  alternative  goal  satisfaction 

strategies, there is thus a preference for recording rationale using inclusive claims where 

feasible.

A claims is written as a simple statement of fact (in essence, the analyst is  claiming 

something to be true), which means that a claim can be characterised as a record of an 

assumption being made. It is possible to examine the basis of a claim or an assumption 

using  a  Claim  Refinement  Model.   The  use  of  Claim  Refinement  Models  promotes 

assumptions as first class entities à la KAOS, offering broadly similar reasoning capability. 

These models are discussed in the next section.

4.2.2 Examining Assumptions with Claim Refinement Models

Claim Refinement Models were introduced in the NFR framework [89], and use a tree-

like structure to connect a claim under study with  underlying claims (sometimes called 

sub-claims) which represent the basis of the original,  studied claim. Claim Refinement 

Models  are  created  on a one-per-target  system basis  in the ReAssuRE process,  with a 

single model allowing the (potentially interdependent) bases of all the claims on a target 

system's Level-One SR model to be examined together. 

A Claim Refinement Model serves as a record of the reasoning behind the claims on a 

target  system's  Level-One SR model.  Broad,  high-level  assumptions  are  shown on the 

Level-One Claim Refinement  Model and are  broken down into  smaller,  more specific 

assumptions  and  assertions  about  the  environment  or  a  decision  alternative.  These 
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assumptions and assertions are also modelled as claims on the diagram. Figure 6 shows the 

claim refinement model for the Adaptive Image Viewer's S2 target system.

 Figure  6 shows  that  the  “Extra  Speed  Needed  in  S2”  claim,  which  supported  the 

decision to use cache in the target system's Level-One SR model in the previous section 

(Figure 4), is derived from the conjunction of two underlying claims: “Latency is High in 

S2” and “Caching will Improve Perceived Speed”. The “Latency is High in S2” claim is an 

assertion  on  the  environment,  and  given  that  significant  latency  is  D2's  defining 

characteristic, this is a relatively safe assertion. On the other hand, “Caching will Improve 

Perceived  Speed”  is  an  assumption  about  the  performance  of  the  file  cache.  This 

assumption can be considered less  safe,  given that  there may be some patterns of file 

access the cache cannot predict (non-sequential viewing, for example).

The need for both underlying claims to hold in order for the “Extra Speed Needed in 

S2” to hold is signified by the and relationship. Other valid relationships between claims 

on a claim refinement model are  or,  make and  break.  A claim backed by two or more 

claims connected with or relationships will hold if any of the underlying claims hold. A 

claim single-handedly upholds another using a  make relationship,  and single-handedly 

invalidates another using the  break relationship, although the last two relationships are 

less often used.
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4.2.3 Benefits and Limitations

It is possible to use fine-grained contribution links to replicate the use of a claim in a 

Level-One model in some circumstances, although to do so is essentially a misuse of i* 

contribution  links.  The  strength  of  a  contribution  link  is  intended  to  speak  to  the 

magnitude of an element's impact on a softgoal, whereas a claim is used to speak to the 

importance  of  an  impact.  The  relatively  small  number  of  available  fine-grained 

contribution links (7: 3 positive, 3 negative and 1 neutral) means that some decisions and 

associated  rationale  cannot  be  captured  through  the  misappropriation  of  fine-grained 

contribution  links,  as  will  be  discussed  shortly.  Furthermore,  if  the  models  already 

(legitimately)  use  fine-grained  contribution  links  to  capture  impact  magnitudes,  it 

becomes impossible to distinguish between “large” and “important” impacts.

Another method of recording decisions taken would involve assigning the softgoals on 

a  model  a  relative  priority.  For  example,  Amyot  &  Mussbacher  [98] assign  softgoals 

numerical  weights,  and contributions to  heavily weighted softgoals  are lent additional 

credence. There are two problems with this approach: firstly, it is very difficult to devise a 

representative  numerical  scheme  that  captures  the  relative  priorities  of  softgoals  and 

contribution  links,  and  attempting  to  do  so  risks  offering  the  illusion  of  quantitative 

backing for what have,  in reality,  been subjective decisions.  Secondly,  there are some 

combinations of decisions that cannot be represented in this manner.  Figure 7 shows a 

snippet of an i* SR model with two decisions affecting the same two softgoals.
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Figure 7 shows two decisions taken when specifying an online video streaming system 

designed to allow viewers to watch a live sporting event. The two decisions concern the 

same two softgoals: “Video Quality” and “Cost”. The analyst aimed to specify a system that 

offers viewers the best possible video quality, but was working with a restricted budget. 

The budget for the entire video streaming system was fixed, but the analyst had freedom 

to assign budget between the video streaming server, the client software, bandwidth and 

web design freely, which means that at the decision level, cost is a relatively ill-defined 

softgoal.

The goal in Figure 7 named “Use Standard Video Codec” can be satisfied either by the 

task “Use Theora” or “Use H.264”, with Theora [99] being free to use and the commercial 

H.264 video  encoder  [100] offering  better  video  quality.  The  goal  “Offer  Appropriate 

Bitrate” can be satisfied either by the Task “Stream at 800kbps” or “Stream at 1200kbps”, 

with there being a fairly linear relationship between the stream bitrate and bandwidth 

costs. It was calculated that the cost of the commercial H.264 video encoder was roughly 

equivalent to the cost of the additional bandwidth required for the 1200kbps video stream 

for the expected number of viewers. The relative improvement in video quality offered 

either by using H.264 or a higher bitrate was uncertain, so considered equivalent also. 
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The eventual decision taken for the video streaming system was to use the free Ogg 

Theora [99] video codec over the commercial H.264 encoder [100], but to offer the more 

costly 1200kbps video to improve video quality.

Assigning different weights to the “Cost” and “Video Quality” softgoals depicted in 

Figure  7 offers  no way to reconcile  the  seemingly contradictory  outcomes  of  the two 

decisions. In the more general case, any approach that records decisions based on some 

notion of softgoal priority will fail when handling multiple related, inconsistent decisions. 

These inconsistent decisions are often made when dealing with a budgeted requirement, 

which has a fixed satisfaction criteria across the system as a whole, but remains ill-defined 

at the level of individual decisions. For example, systems with a maximum total weight, 

cost or power consumption could all need to record decisions inconsistent with simple 

softgoal priorities, given the need to stick to an overall budget.

The ReAssuRE method of recording decision rationale, using claims on a per-decision 

basis allows inconsistent or directly conflicting decisions to be recorded, along with the 

rationale behind them. The rationale of inconsistent or conflicting decisions is particularly 

useful given its complexity, and particularly difficult to infer from models if not stated 

explicitly.  The  same  i*  SR  model  augmented  with  claims  allows  the  decisions  to  be 

recorded, as depicted in Figure 8.
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Figure  8 shows  the  decisions  reached  in  each case,  which cannot  be  achieved  by 

manipulating softgoal priorities.  The claims also give a brief  overview of the rationale 

behind each decisions, which in this case are clearly inconsistent. The crucial factor in 

these particular decisions was the possibility of costs being lower should fewer people 

view the event, and the full  rationale behind the two decisions is depicted in a Claim 

Refinement Model in Figure 9.

Figure 9 shows the cost of  the software necessary to provide H.264 video and the 

working behind the bandwidth cost estimate. The model serves to explicitly highlight the 

estimates  of  event  duration and number  of  users,  and to  show the relatively  perilous 

nature of the decisions, given their reliance on estimates. The key assertion in the model, 

however, is the claim stating that bandwidth cost [unlike the H.264 software cost] will fall 

if  there  are  fewer  users  than  expected,  which  as  stated  previously  underpinned  the 

decision to use the higher bitrate stream instead of better quality encoding for the video.

The greatest benefit of using claims to record decision rationale in Level-One models is 

the enhanced traceability of the models with the claims added. Enhanced traceability is 

useful when making changes to the models. There are many potential reasons that a DAS's 

model may need changing: environmental knowledge may improve (or merely change), a 
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recorded assumption may be proven false, a new potential goal satisfaction strategy may 

be identified, a user requirements change, or even a need to make a change as a result of a 

previous change. With a complex, volatile and possibly imperfectly understood operating 

environment,  these  change drivers  are  likely  to  be  encountered as  least  as  frequently 

when performing RE for DASs as when for traditional, non-adaptive systems.

Regardless of the reason for a model change becoming necessary, the ability to identify 

the decisions affected by a change is crucial to an efficient change-management process. 

The  enhanced  traceability  of  ReAssuRE models  over  LoREM models  allows  decisions 

affected by a change to be identified, re-considered, and re-taken if necessary, which is 

clearly useful.

As well as the ability to identify decisions and trace change impact, ReAssuRE models 

allow the problem space to be explored by way of uncovering assumptions. The act of 

constructing a Claim Refinement Model examining one or more claims forces the analyst 

to  think about the assumptions they have made in making decisions,  and provides an 

opportunity to validate newly uncovered (previously implicit) assumptions. The ability to 

uncover previously implicit but now validatable assumptions can, potentially increase the 

robustness of the eventual DAS's specification. For those assumptions for which validation 

is impossible or infeasible, another of this thesis's contributions allows assumptions to be 

monitored at run time,  and for decisions reliant upon them to be re-taken by a DAS 

autonomously  in  the  event  of  one  or  more  assumptions  no  longer  holding.  This 

contribution is discussed further in Section 6.2.

Although the benefit of modelling decisions and assumptions with claims in terms of 

traceability is applicable to the modelling of any system, this thesis restricts itself to DASs 

for  two reasons:  Firstly,  the  complex,  volatile  and uncertain  environments  that  DASs 

prove most useful for mean that there is a greater probability of decisions having to be re-

examined or re-taken later during the RE process. Secondly, decisions taken during the RE 

process  for  “partitioned”  DASs,  designed  to  operate  in  an  environment  that  has  been 

partitioned into individual domains,  are likely to be repeated in multiple domains.  As 

such, the rationale behind the decision in an individual domain is more likely to become 
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lost or confused, given the presence of near-identical decisions taken in multiple other 

domains.

The idea of recording key decisions and exploring the assumptions on which they are 

based is shared with the notion of obstacle analysis in KAOS. However, the approaches 

differ  in  style,  application  and  their  suitability  for  DAS  modelling.  Obstacle  analysis 

involves uncovering potential problems, threats or conditions that may block or impede 

the satisfaction of a goal. After uncovering a potential obstacle, an addition can be made to 

the model to mitigate the obstacle. The additions to the model eventually form part of the 

system's specification, increasing its robustness.

At its core, the act of examining potential threats to the system's ability to operate 

(using KAOS obstacle analysis) is similar to the act of examining the assumptions upon 

which the specification relies (using claim refinement): any assumption not holding can be 

thought  of  as  an  obstacle.  There  are  two  key  differences,  however,  between  obstacle 

analysis and claim refinement. Firstly, obstacle analysis operates at a lower level, requiring 

specific knowledge of a threat or condition that can prevent a goal being satisfied. When 

performing claim refinement,  the reason for  an assumption's  no longer holding is  not 

necessarily explored, which means that claim refinement can take place at an earlier stage 

of  the  RE  process,  and  with  less  concrete  knowledge  of  the  operating  environment. 

Secondly, the specificity of obstacle analysis allows an analyst to introduce specification 

elements  designed  to  mitigate  identified  obstacles.  The  higher-level  nature  of  claim 

refinement means that it is difficult to fully understand the causes of an assumption no 

longer holding, and thus difficult to specify a specific solution.

For a DAS, the ability to explore assumptions at a higher level without the need for 

specific, reliable and deep understanding of what is likely a complex, volatile operating 

environment is clearly an advantage. However, the difficulty in exploring mitigation is 

challenging. One of this thesis's contributions is a method by which the design of a DAS's 

target systems may be modified in response to an assumption no longer holding either at 

design time or at run time. This contribution is discussed further in Section 6.2.
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Some argue that the complexity of i* SR models hinders understanding, and ultimately 

the models' usefulness.  Thus, adding additional elements to the models, in the form of 

claims, comes at a cost of additional complexity. Some i* modelling tools [84] [73] offer the 

ability to view only relevant subsections of models, which goes some way to mitigating 

the  problem.  In  the  LoREM  process  [16], a  significant  number  of  models  need 

constructing, which further increases the workload in their creation, a problem shared by 

the ReAssuRE process. Models constructed at a single of the four levels of RE for a DAS 

often have little in the way of variation, and in some ReAssuRE models, only the claims 

differ.

One potential method by which to address this issue would be to offer a method by 

which a single model could be constructed containing the model components applicable to 

all target systems (at Level One) with different “dimensions” conditionally displaying only 

the elements applicable to a specific target system. At its core, this idea is similar to the 

method proposed by Lapouchnian & Mylopolous  [101] to offer contextual variability in 

goal models, with different target systems treated as contexts. This fits well, given that 

claims  record  an  assumption  made  about  the  environment,  a  DAS  component  or  an 

expected  impact  of  a  component's  selection,  and  contexts  in  the  work are  defined as 

“abstraction[s] over a set of environmental assumptions”.

According to  Lapouchnian  & Mylopolous, model  components  (elements  and links, 

which would naturally extend to claims) can be “tagged” to appear only (or not appear) in 

one  or  more  certain  named  contexts.  Switching  between  contexts  brings  a  different 

dimension of the model into view. At present, however, no i* modelling tools support 

multiple model dimensions, and their utility may be limited to high-variability models, of 

which DAS models can be argued to be subset.

Another potential  problem with claim-augmented SR models  is  that  it  is  perfectly 

possible to construct a model containing decisions for which the available alternatives are 

known, but for which it is impossible to infer the selected alternative. This problem can 

exist in any i* or similar model, and is known as deadlock. Although it is of course possible 

to require all decisions to be supported by a claim breaking any deadlock, the possibility of 
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a model being modified by the DAS at run time (discussed further in Section 6.2) opens 

the possibility of the model becoming deadlocked. At this time, the only remedy to this 

issue is through careful construction of ReAssuRE models, and allowing only deterministic 

model modification to occur at runtime.

To conclude,  the use of claims in DAS Level-One modelling is  one of this  thesis's 

contributions,  and  forms  the  foundation  of  several  of  this  thesis's  later  contributions. 

Recording decision rationale, and the assumptions upon which they were based not only 

improves  traceability,  but  opens  up  the  possibility  of  a  DAS  performing  model 

modifications at runtime in response to unanticipated environmental conditions, adopting 

new  configurations  based  on  the  changed  models.  The  next  section  examines  the 

ReAssuRE improvements to the Level-Two modelling process.

4.3 Level Two Modelling

If individual target systems are modelled at Level One in the LoREM [16] process, then 

Level-Two models concern a DAS's transitions between them. Level-Two models cover 

the DAS's monitoring of its operating environment, the decision-making that uses this 

monitoring information to identify changes in domain, and the adaptation triggered in 

response to these domain changes, effecting the change to a new target system. Level-Two 

models allow the analyst to understand the DAS's adaptive behaviour, and taken with the 

Level-One  models  can  offer  a  full  picture  of  the  DAS's  behaviour  in  all  expected 

conditions.

The Level-Two models used in the ReAssuRE process have been adapted from those 

used In  the LoREM  [16] process,  aiming to  make them more amenable  to  automated 

analysis. The requirements posed by the need to be amenable to automated analysis (and 

the analysis itself)  is  discussed further in Section  5.2. For this purpose,  the Level-Two 

models perform two key functions:
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1. Define valid transitions between target systems

2. Define the conditions under which those transitions will occur

Defining the valid transitions between target systems is merely a matter of creating 

Level-Two models for  only pairs of  target systems the DAS is to be able to transition 

between.  Invalid  transitions,  that  is,  those  pairs  of  target  systems  the  DAS  shall  not 

transition between (or may do so only unidirectionally), are identified as such by there 

being no Level-Two model associated with them (or only a single model for unidirectional 

transitions).

The conditions under which a given adaptation is to occur is often referred to as a 

trigger condition: some property of the environment or the DAS whose detection causes 

the DAS to perform a given adaptation. Returning to the Adaptive Image Viewer example 

used earlier in the chapter, Figure 10 shows a LoREM Level Two model for the transition 

between target systems S1 and S2.
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The transition depicted in  Figure 10 is the transition performed when the Adaptive 

Image Viewer detects significant network latency, and introduces a file cache to improve 

perceived performance. The transition occurs between the S1 (no cache) and S2 (cache) 

target  systems,  as  indicated by the “Adapt  from S1 to  S2”  goal.  The need to  include a 

(identically  named)  task  performing  the  adaptation  is  syntactic,  prescribed  by  the  i* 

guidelines  [102], and is completed by in turn completing two sub-tasks: “Identify High 

Network Latency” and “Introduce Cache”.

Earlier  in  the  section,  two  key  functions  of  a  Level-Two  model  were  identified. 

Examining Figure 10 with respect to these, the model clearly allows the valid transitions 

to be defined (by creating a model for each), but the circumstances in which the transition 

should  occur  are  only  imprecisely  defined  by  the  high-level  “Identify  High  Network 

Latency”  task.  In  order  to  better  fulfil this  second identified  function,  the  Level-Two 

model needs to offer a lower-level view of the conditions under which adaptation occurs. 

The model also duplicates some information readily available on the Level One models: 

the need to introduce a cache to transition between S1 and S2.

A lower-level view of the conditions under which an adaptation is to occur requires 

some representation of the conditions monitored by the DAS to trigger adaptation and 

what the trigger actually is. However, the monitored conditions and the adaptation trigger 

are  the  responsibility  of  two  different  elements  of  the  adaptive  infrastructure:  the 

monitoring mechanism,  and the decision-making mechanism.  In  Figure  10,  these  two 

roles  along  with  the  adaptation  mechanism  are  conflated  into  the  “Adaptive 

Infrastructure” actor, which plays all three roles in the adaptive image viewer. In some 

DASs, these roles are played by different agents, - possibly with little knowledge of one-

another. Thus, it is advantageous to model the conditions monitored by the monitoring 

mechanism,  the  trigger  fired  by  the  decision  making  mechanism,  and  the  transition 

effected by the adaptation mechanism. Figure 11 depicts a ReAssuRE Level Two model of 

the same transition with this increased detail.
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The three roles depicted in  Figure 11 each have a goal  to achieve:  the monitoring 

mechanism  seeks  to  “provide  monitoring  data”,  the  decision  making  mechanism  to 

“trigger adaptation at the correct time”, and the adaptation mechanism seeks to “effect 

adaptation”. These goals are the same for all transitions and for all DASs, with differences 

between transitions occurring in their means of satisfaction. The monitoring mechanism, 

in achieving the “provide monitoring data” goal furnishes the “monitoring data” resource, 

which is needed for the decision making mechanism to complete its “analyse monitoring 

data”  task.  The  adaptation  mechanism requires  an “adaptation  trigger”  resource  to  be 

furnished to be able to adapt in a timely manner, with responsibility falling to the decision 

making mechanism.

The decision making mechanism is the most interesting part of the model in Figure 11, 

depicting how the goal “trigger adaptation at correct time” is achieved. In the Adaptive 

Image  Viewer,  adaptation  is  triggered  by  firing  an  event  at  the  appropriate  time,  as 
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represented by the “fire event when environment changes” task. This task is completed by 

completing both the “identify environment switch from D1 to D2” task (which is in turn 

completed  by  completing  the  task  “analyse  monitoring  data”),  and  the  “fire 

HIGH_LATENCY event” task. It is this final task which explicitly states the adaptation 

trigger  required  for  the  model  to  sufficiently  define  the  conditions  under  which 

adaptation is to occur.

In  some DASs,  it  would  be  beneficial  to  provide  additional  detail  in  the  “analyse 

monitoring data” task, to explicitly state which monitoring values would indicate a need 

to fire the adaptation trigger. However, for the purposes of policy generation (as discussed 

in Section 5.2) this information is superfluous.

A ReAssuRE Level-Two model has the advantage of mapping more directly onto the 

three separate roles that make up an adaptive infrastructure than a LoREM Level-Two 

model. This allows the goals (and eventually requirements) of the individual roles to be 

examined separately, which is important in a DAS where the roles are to be (or merely 

may  be)  played  by  different  concrete  agents,  or  where  the  development  of  different 

aspects  of  adaptive  infrastructure  is  likely  to  later  be  split  between  teams.  ReAssuRE 

Level-Two models also provide more detail about the conditions under which a transition 

between target systems is to occur, which is necessary to support the derivation of a DAS's 

adaptive behaviour from models, as discussed further in Section 5.2.

These advantages, however, come at a price of complexity: in that ReAssuRE Level-

Two models are considerably more complex than their LoREM counterparts. This adds to 

the  modelling  workload,  and  although  this  is  of  concern  this  thesis  shows  that  the 

workload saved in allowing automatic derivation of adaptive behaviour, and the ability to 

trace errant adaptive behaviour back to its cause at the earliest goal modelling stages can 

justify this extra workload. It is also worth noting that most ReAssuRE Level Two models 

are  similar  (see  for  example  Figure  12),  offering  the  possibility  of  using  templates  of 

common elements to reduce this workload.
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The similarity between Figure 11 and Figure 12 also offers the possibility of the models 

being  conflated,  with  differing  elements  displayed  conditionally  depending  on  the 

transition being viewed. This is essentially the same approach as discussed in Section 4.2.3, 

with individual transitions being considered as contexts [101].

To conclude, ReAssuRE Level Two models are constructed with greater detail, and are 

thus  more  complex,  than their  LoREM counterparts,  which  better  enables  automated 

reasoning based upon them. There is also significant advantage in this extra detail when 

dealing with DASs for which the three roles of an adaptive infrastructure (monitoring 

mechanism, decision making mechanism and adaptation mechanism) are to be separated. 
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4.4 Chapter Conclusion

This chapter presented and discussed the ReAssuRE modelling process for DASs, with 

a  particular  focus  on  changes  made  from  the  existing  LoREM  process.  The  chapter 

presented claims, which are used to highlight a decision in Level-One Strategic Rationale 

models, and to present the rationale behind it briefly. The chapter has also shown how the 

assumptions underpinning decision rationale can also be modelled as claims and examined 

in a  claim refinement model.  Finally,  the chapter  has shown how a DAS's  transitions 

between target  systems can be  modelled  at  Level  Two in  such a  way that  adaptation 

triggers,  which start  a  given transition can be  identified  for  use  later  in  the  software 

engineering process, when writing adaptation policies.

The next chapter discusses how ReAssuRE models can be used later in the RE process 

aiding  in  managing  requirement  changes  (demonstrating  the  enhanced  traceability 

discussed in this chapter), in writing adaptation policies, and in performing requirements 

validation work.
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5 ReAssuRE at Design Time

Chapter  4  introduces  the  ReAssuRE  modelling  process,  using  the  adaptive  image 

viewer example. This chapter extends the adaptive image viewer example to demonstrate 

the  benefits  of  ReAssuRE models  at  design  time.  The  chapter  discusses  the  increased 

traceability of the models, providing examples of the sort of tracing activity the models 

support over and above their LoREM counterparts,  along with their  ability to support 

policy generation, and to aid in performing requirements validation.

The  feature  underpinning  all  of  the  model  uses  discussed  in  the  chapter  is  the 

availability  of  extra  tracing  information,  codified  in  claims  in  the  models.  Naturally, 

additional tracing information aids traceability, but the ability to retrieve some limited 

rationale  aids  also  in  identifying  and  exploring  areas  of  uncertainty  in  the  analyst's 

understanding of a DAS's proposed operating environment. Although it would be possible 

to perform the policy derivation discussed in Section 5.2 without information from claims 

(and thus it would be possible to perform the derivation from LoREM models), the process 

of identifying the proposed configuration for each of a DAS's target systems is simplified 

by the claims' presence.

5.1 Traceability in ReAssuRE models

This section examines both the drivers for, and the consequences of changes in a DAS's 

requirements  models.  The  section  is  split  into  two  along  this  divide,  with  the  first 

subsection discussing the types of change a DAS model is likely to be subjected to and 

identifying  the  traceability  requirements  for  ReAssuRE  models  to  support  change 

management  effectively  for  each  type.  The  second  subsection  demonstrates  how  the 

ReAssuRE models meet these traceability requirements, and support the tracing need. The 

issue of change in DAS requirements models, and the ability of ReAssuRE models to cope 

with this change has been published in preparation for this thesis [87].
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5.1.1 Change in DAS Requirements

Changes can be required of a system at any stage during its design, implementation or 

useful  life.  In  a  system that  possesses  no  adaptive  capability,  these  changes  are  made 

offline by developers in the form of maintenance. A DAS, on the other hand, is able to 

perform some of these changes autonomously, lending DASs to use in volatile domains 

with shifting requirements and priorities.

 The nature of the problem domains for which DASs are conceived are such that a 

DAS's operating environment may be only partially understood at design time. The novel 

and emergent nature of the technologies upon which DASs are based also means that the 

likelihood of beneficial new technologies emerging is high. A DAS may exhibit emergent 

behaviour as it  re-configures itself  dynamically,  in ways and under circumstances that 

may have been hard to anticipate at design time. Thus, far from their adaptive capability 

making  them  immune  to  the  need  for  maintenance  and  re-specification,  DASs  are 

particularly susceptible to it. 

Ramesh and Jarke [103] sort users of trace information into two groups: high and low 

level, depending on the types of use made of the information. Two of these uses are of 

particular interest to DASs: 1. Tracing decision rationale and 2. Tracing for evolvability. 

To  allow  decision  rationale  tracing,  a  record  needs  to  be  made  of  each  the  viable 

alternatives considered, along with assumptions of the impact the selection of each would 

have.  Requirements  evolution can occur due to  a  change in user  needs,  or  due to  an 

identified  deficiency  in  the  system  and  requires  the  ability  to  understand  how  a 

requirement came to be. 

As  requirements  at  different  levels  of  detail  change,  the  question “Where did  this 

requirement  come  from?”  becomes  harder  to  answer.  Furthermore,  given  that  these 

requirements may form the basis of the justification for several decisions, each of which 

will be repeated (with different environmental assumptions) for several target systems, a 

change in requirements can have a widespread impact in a DAS. The likelihood of far-
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reaching change impact means that tracing of decision rationale and for evolvability are 

crucially  important  for  DAS  developers.  Thus,  DASs  promote  high-level  tracing  as 

essential practice. 

There  are  five  main  classes  of  change  that  a  DAS's  specification  may  need  to  be 

adjusted for. Each needs handling differently.

1. Environmental Change

2. Faulty Assumption

3. New Technology

4. Consequential Change

5. Stakeholder Requirements Change

The following paragraphs discuss each identified class of change in detail.

Environmental change will be particularly common given the inherent volatility of 

any DAS's proposed environment; which increases the likelihood of individual domains 

being misunderstood, or entirely new domains being discovered. This class of change may 

occur during any stage of the DAS's life cycle, and the need for change may be signalled 

by a system failure if it emerges only after deployment. A change to the understanding of 

a  previously  identified environmental  domain will  trigger  the need to  re-evaluate  the 

design decisions taken for it. The identification of a new domain will require a new target 

system (and associated  model)  to  be  created,  possibly  based on that  of  another  target 

system.

When environmental understanding changes, the model for an entire target system 

will need to be reconsidered, or created from scratch if a new domain has been discovered. 

Essentially,  this  will  involve  re-making  all  the  per-domain  decisions  (that  is,  those 
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decisions taken in each domain for each target system) in light of the changed (or new) 

environmental knowledge. For this type of change, the only trace information needed to 

effect the change efficiently is the ability to identify all the decisions taken for a given 

target system, although a record of the rationale behind the decisions taken will allow 

them to be re-taken more easily.

A faulty assumption may be an assumption about the environment in a given domain, 

or  an  assumption  about  a  given  component's  suitability  for  a  particular  domain.  The 

assumptions  underpinning  the  Level-Two modelling  are  also  classed  as  environmental 

assumptions, and will affect several different levels of model. Assumptions such as these 

may be broken as designers better understand the domain or the proposed DAS, or may 

only become apparent after deployment. An assumption being found faulty triggers the 

need to re-evaluate all decisions based upon it.

An  assumption  may  be  found  faulty  either  by  improved  understanding  of  the 

environment or available alternatives for a decision, or having been broken demonstrably 

in the field. In either case, all of the decisions based on the faulty assumption will need to 

be revisited. In order to facilitate this forward tracing, there needs to be a record of all 

decisions reliant on the assumption, along with information on the alternatives previously 

considered  for  each  affected  decision  (including  their  perceived  impact  on  the  DAS's 

quality features) to allow it to be re-taken. 

The  availability  of  an  exploitable  new technology,  or  more  generally  some newly 

identified capacity or opportunity for the DAS, can be modelled as a new alternative for 

some decision.  Given  the  relative  immaturity  of  adaptive  infrastructures,  this  kind  of 

change will  likely occur frequently.  As with a non-adaptive system, designers need to 

weigh the potential costs and benefits to decide whether to take advantage of the new 

technology or not. However, for a DAS, the decision needs taking in each domain, and 

reached for each target system. If the new technology is utilised in one or more target 

systems, other decisions that impact on those quality features affected by the use of the 

new  technology  in  these  target  systems  will  need  to  be  revisited,  to  provide  an 

opportunity to re-balance them.
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A new decision  alternative  will  require  only  a  limited  number  of  decisions  to  be 

revisited. However, each decision may need to be revisited in each domain, for each target 

system.  As  such,  to  support  this  backwards  tracing,  there  needs  to  be  a  record  of 

alternatives previously considered for  a decision,  and a record of  the rationale behind 

previously reached decision.

Consequential change so named because the change is necessitated as a consequence of 

a previous change. This kind of change will be particularly important in systems with a 

“budgeted”  requirement  such  as  a  maximum  power  consumption  or  maximum  total 

weight.  In  this  case,  making  any  of  the  previous  types  of  change  can  require  a  re-

evaluation of previous decisions across all domains, trying either to bring the system back 

down to budget if the change negatively impacted the budgeted requirement, or to more 

fully utilise the budget if the change created headroom.

A consequential change requires the ability to trace across target systems all decisions 

made that affected a given, budgeted requirement. As such, there needs to be a record of 

which requirements are affected by which selection alternatives, to allow the analyst to 

search through the system to find an acceptable change to trade-off against the previous, 

necessitating change.

Stakeholder  requirements  change  is  of  course  not  specific  to  DASs.  However,  the 

impact may reach several target systems, essentially multiplying the workload involved in 

making the change. User requirement changes are difficult to predict, and are also variable 

in the extent of their impacts.

A stakeholder requirements change can potentially affect any or all target systems, or 

may necessitate a change to a static (i.e. identical in all target systems) component of the 

DAS. Therefore, as with user requirement changes to non-adaptive systems, the impact of 

this type of change varies from case to case.

To summarise, this section has argued that potentially incomplete understanding of a 

complex, volatile operating environment means that changes to a DAS's specification is 

likely. It has presented five classes of change that a DAS's specification may be subject to. 
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Each class of change presents its own tracing requirements for the change to be effected 

efficiently.  Table  2 below  summarises  the  traceability  requirements  for  each  class  of 

change, and highlights those that are met by the LoREM and ReAssuRE models.

Class of Change Traceability 

Requirements

LoREM Support ReAssuRE Support

Environmental Change Target system separation Partial Yes

Faulty Assumption Forward tracing No Yes

New Technology Backward tracing Partial Yes

Consequential Change Backward tracing Partial Yes

Stakeholder Req. Change Indeterminate Indeterminate Indeterminate

Table 2: Support for Traceability Requirements of Identified Change Classes

In  Table 2, the target system separation tracing requirement refers to the ability to 

identify all the decisions taken for a target system, and the availability of the rationale 

behind the decisions. The forward tracing requirement refers to the ability to identify all 

the decisions affected by an entity, and the backward tracing requirement to the ability to 

identify decisions that affect an entity. The scope of a stakeholder requirement change is 

unpredictable, thus the tracing requirements for a specific change are also indeterminate.

The next section examines the degree to which each set of traceability requirements is 

met by the LoREM and ReAssuRE models, returning to the Adaptive Image Viewer DAS 

for illustration.

5.1.2 Tracing Examples

This  section  provides  guided  examples  showing  how  ReAssuRE  models  meet  the 

tracing requirements identified in the previous section. The examples all centre around 

the Adaptive Image Viewer first discussed in Section 4.2, and take the form of potential 

specification changes: one for each class of change identified in Section 5.1.1.
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Environmental Change

As understanding of a DAS's operating environment improves, the decisions reached 

and balances struck for a target system may need to be re-visited. Furthermore, even if the 

analyst's understanding of the operating environment is perfect, the environment itself 

may change over time, triggering the same need to re-visit a target system's specification. 

In Section  4.2,  the  Adaptive  Image Viewer's  two target  systems were identified  as:  S1 

(Normal) and S2 (High Latency). The DAS's specification calls for a file cache to be used in 

the  S2 target  system  to  improve  perceived  performance,  but  not  for  S1 to  conserve 

memory.  An example of  an environmental  change would be the emergence of  a new 

domain:  D3 -  characterised  by  both  poor  network  performance  and  low  amount  of 

available memory.

The emergence of  this  new domain would likely be  identified by a  failure  during 

adaptation from S1 to S2, when the DAS finds insufficient memory to enable the cache, 

prompting the need to specify a third target system: S3. Given that the high-level goals and 

softgoals of the S3 target system are the same as the most similar existing target system, S2, 

a significant amount of S2's model can be re-used for the new target system. The only 

model elements that should not be transferred are the claims, which are domain-specific. 

Figure 13 shows the newly created model.
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Now that a base model exists for S3, the analyst can identify decisions that need to be 

made  for  the  new  target  system.  This  identification  is  achieved  by  locating  all  goal 

elements on the model that have two or more tasks attached to it via means-end links. The 

only such goal in Figure 13 is the “Load Data” goal. The decision in this instance is simple: 

there is not enough memory to enable the cache, and so the “Don't use Cache” task is to be 

selected. It would be possible to model this decision by removing the “Use Cache” task 

from the model,  but to  do so would hinder future tracing by removing the record of 

available  alternatives  for  the  decision.  Instead,  the  decision  is  to  be  modelled  by the 

inclusion of a claim.
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The rationale behind the decision not to use the cache in S3 is that there is not enough 

memory to  do  so.  Thus,  the  “Use  Cache”  task's  “hurt”  contribution to  the  “Minimise 

Memory Usage” softgoal can be lent extra credence with a claim. The brief rationale in the 

claim: “Insufficient Memory” serves to assist later users of the model in understanding 

why the decision was reached,  as  well  as serving as a  bottom-level  claim for  a Claim 

Refinement Model. Figure 14 shows the final SR model for the S3 target system.

Figure 14 shows that the decision not to use a cache in D3 was taken, and that the 

rationale behind the decision was that there was “insufficient memory”. Although in this 

instance, even this brief rationale would likely be sufficient for tracing purposes, more 

complex rationales would be supported using a Claim Refinement Model. For illustrative 

purposes,  the  Claim Refinement  Model  supporting the  “insufficient  memory”  claim is 

shown in Figure 15.
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Figure 15 shows that the “Insufficient Memory” claim is based upon two assumptions: 

that  the cache uses  32M of  memory when active,  and that  there is  less  than 32M of 

memory available in D3.  The former is an assumption about a decision alternative, the 

latter  an assumption about the environment.  Although the utility of claim refinement 

models to promote traceability is diminished for simple rationales, questions such as "Why 

does the adaptive image viewer not use a cache under these circumstances?" that may be 

asked later in the specification or design phases, or indeed after deployment are better 

answered with this information available.

Broken Assumption

It could be argued that most types of specification changes are, in fact, underpinned by 

a  perhaps  implicit  assumption that  has  been  broken.  However,  in  the  context  of  this 

thesis, a broken assumption refers to one of the assumptions made explicitly during the RE 

process,  modelled  as  a  claim in  a  ReAssuRE model.  Returning  to  the  adaptive  image 

viewer's S2 target system, the SR model for which was first depicted in Figure 4 on page 

54, we can see that the S2 target system is specified as using the cache, because the extra 

perceived speed it brings was deemed necessary in D2. 

The S2 Claim Refinement Model (Figure 6 on page  57) shows that this rationale is 

based on two assumptions: that there will be significant latency in D2, and that using the 
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cache  will  improve  the  perceived  speed  of  the  application  in  loading  images. 

Unfortunately, this second assumption only holds if the cache is able to predict the images 

the user is likely to request next: e.g. if they are being accessed sequentially. If, in normal 

use,  images  are  not  accessed  in  a  predictable  sequence,  the  “Caching  will  Improve 

Perceived Speed” assumption will no longer hold.

ReAssuRE  models  support  the  tracing  of  the  impact  of  a  broken  assumption  by 

propagating a “broken” label through a Claim Refinement Model, and if necessary onto 

the  SR  model  of  a  target  system.  The  rules  of  label  propagation  throughout  a  Claim 

Refinement Model are as follows:

• When a claim is derived from a single claim, the derived claim inherits the label of the 

upper-level claim; the upper-level claim makes or breaks the derived claim.

• When a claim is derived from two or more AND-ed claims, it inherits the label of any of 

its supporting claims thus, should an upper-level claim be broken, so too is the derived 

claim.

• When a claim is derived form two or more OR-ed claims, a label is only propagated if 

all of the supporting claims possess the label.

Applying these rules to propagate a “broken” label throughout the claim refinement 

model in Figure 6 yields Figure 16.
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Figure 16 shows that if the “Caching will Improve Perceived Speed” claim is broken, so 

too is the bottom level claim: “Extra Speed Needed in S2”. This bottom-level claim is then 

broken on the S2 target system's SR model, where the decisions affected by the claim can 

be traced. The updated SR model for the S2 target system is depicted in Figure 17.
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Figure 17: Adaptive Image Viewer's S2 Target System with Broken Assumption
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As Figure 17 shows, the claim previously supporting the decision to use the file cache 

in S2 has been broken, and thus the contributions of the tasks requiring the use of the 

cache or otherwise are deadlocked once more. However, we can use the newly uncovered 

information: that the cache is ineffective in S2 to break the deadlock by adding a new 

claim: “Cache ineffective in S2”.  Figure 18 shows the SR model for the S2 target system 

with the new claim.

Figure 18 depicts the updated model with the faulty assumption's claim removed, and 

the new knowledge: that the cache does not, in fact, improve perceived speed in S2 added. 

If the newly-added claim (or rather, the rationale it eludes to) was complex, then it may 

be  necessary  to  produce  a  new  Claim  Refinement  Model  showing  the  underlying 

assumptions.  In  this  case,  however,  the  rationale  is  simple  and  explicit:  thus  none  is 

necessary.
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New Technology

A new technology will typically manifest itself as a new alternative to a decision, or a 

new  decision  will  have  to  be  taken  because  previously  only  one  alternative  was 

considered. For the adaptive image viewer, the example for broken assumptions can be 

extended to illustrate  this  type of  scenario.  If  it  was  discovered that  the  image cache 

turned out to be ineffective, perhaps because the image viewer was used to view images 

non-sequentially, the idea of creating a new type of cache may be floated. 

This new type of cache would use basic learning behaviour to remember the sequences 

that images  are accessed in, so that if the same pattern of images is accessed again, the 

cache can pre-load image data  and improve perceived speed.  This  new type of  cache 

would need slightly more memory than the original cache to provide this learning feature 

as well as cache image data, but would opt not to cache image data when no prediction 

was available. Thus, the overall increase to memory consumption using the learning cache 

can be considered insignificant.  Figure 19 shows an updated SR model for the S2 target 

system (with elements carried over from the previous broken assumption example) with 

the new type of cache added as a decision alternative.
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As Figure 19 depicts, using the original cache is still inadvisable because it has proven 

ineffective. However, given the use of an exclusive claim to remove the original cache 

from consideration, it is still viable to use either the new learning cache, or no cache at all. 

It  is  decided  that,  given  the learning cache's  relatively  slim memory  requirements  in 

scenarios in which it will not be effective, that it is to be used in S2. Using the learning 

cache in S2 will improve perceived speed at the expense of memory consumption where 

possible, but will use a small amount of memory for no benefit in less favourable scenarios. 

This rationale is somewhat more complex than that discussed previously, and the Claim 

Refinement Model capturing it is depicted in Figure 21.
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The original cache failed because images were not normally accessed sequentially. this 

fact is modelled as a claim, which provides sufficient justification to support the “Cache 

Ineffective in S2” claim introduced in the previous example. The new cache's expected 

behaviour  is  asserted  by  the  “Learning  Cache  Supports  Non-sequential  Access”  claim, 

which  conjoined  with  the  previous  claim  supports  the  “Learning  Cache  Sometimes 

Improves Speed”. This, in turn, is combined with the previously seen “Network Latency is 

High in  S2”  assertion to  offer  a  bottom-level  “Try  to  Improve Speed Where Possible” 

Claim. 

The  original,  and now invalidated,  rationale  persists  in  Figure  20.  This  is  entirely 

optional, and offers the benefit of allowing previously made assumptions to be identified, 

even if later discarded. The ability to trace previous decision outcomes is not central to the 

ReAssuRE process, but has some interesting uses, as discussed further in Section 6.2. Those 

who chose to remove invalidated decision rationale will enjoy less complex models, which 

is, of course, appealing. 
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Although the single additional bottom-level claim in Figure 20 would be sufficient to 

break the deadlock on the SR model in  Figure 19, the rationale presented by  Figure 20 

makes no reference to the part of the rationale dealing with the acceptable memory cost in 

situations where the cache doesn't improve speed. This rationale is represented by the 

“Learning Cache uses Little Memory when Learning” claim, which along with the “Cache 

Ineffective  in  S2”  claim,  is  responsible  for  upholding  the  bottom-level  “Memory  Cost 

Acceptable” claim, as depicted in Figure 21. 

The three valid bottom-level claims depicted in Figure 21 can be added to the S2 target 

system's SR model to justify the selection of the learning cache to satisfy the “Load Image 

Data” goal, as depicted in Figure 22.
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Complexity in i* models is a recognised problem [104] [105] [106], and adding three 

claims to a model where a single claim would be sufficient to break the deadlock on the 

model  and represent  a  decision may seem frivolous.  There  is  thus  a  tension  between 

accurately recording the rationale behind a decision, and minimising the complexity (or 

maximising the comprehensibility) of the models. This problem is discussed further in 6.2, 

but  for  now  Figure  23 and  Figure  24 depict  a  less  precise  rationale  for  the  decision 

captured in a single claim on the SR model,  and the corresponding Claim Refinement 

Model respectively.
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Figure 23: Simplified SR Model Showing Learning Cache's Selection in S2
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Consequential Change

A consequential change is one brought about as a result, either directly or indirectly, 

of another change. This type of change is most commonly encountered when dealing with 

a requirement with an overall  budget such as a maximum weight or maximum power 

consumption. For the adaptive image viewer, no such budgeted requirement exists, so for 

the purposes of this example, we shall introduce the classic budgeted requirement: cost. 

The decision in the previous example to create a learning cache better suited to the D2 

domain comes at a cost in terms of development time and, thus, cash. If the project to 

develop the adaptive image viewer had an overall  budget, it  may be that this decision 

takes the whole system over budget. Figure 25 shows the S2 target system's SR model with 

this example budgeted requirement added.
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Merely adding the “Minimise Cost” softgoal and the necessary contribution links has 

the effect of visually tilting the decision process in favour of not using a cache at all, given 

that  both  of  the  other  options  for  the  “Load  Image  Data”  goal  have  two  negative 

contributions to one positive. However, the need to maximise perceived speed is valued 

highly, and cost has been largely ignored in the decision. This could be represented by a 

“Cost Acceptable” claim, but as this is not the focus of the example, we shall instead turn 

to the issue of handling the fact that the system is now over budget.

Dealing with a consequential change involves tracing across target systems all of the 

decisions taken that affect the budget under consideration. In the adaptive image viewer, 

there is only a single decision taken in each target system: the decision whether or not to 

use a cache (or now the new learning cache). Examining each of these decisions in turn to 

see if a change can be made to bring the system back down to budget may yield new 

decision outcomes, with appropriate rationale. For the adaptive image viewer, however, 

the  decisions  are  unlikely  to  be  reversed  and thus  the  only  option available  is  to  re-

negotiate the budget.

In some situations, after tracing the decisions that affect a budget it would be possible 

to identify likely candidate decisions for adjustment using softgoal priorities. However, 

correctly  setting  priorities  is  no  easy  task,  and  to  do  so  risks  offering  the  illusion  of 

quantitative precision for what are in reality imprecise qualitative expressions of priority. 

Furthermore, decisions often to not adhere strictly to a set of priorities, and attempting to 

impose  some  priority  metric  on  the  affected  softgoals  will  give  the  appearance  of 

contradictory and inconsistent decision outcomes. Some seemingly contradictory decisions 

cannot  even be  represented by assigning softgoal  priorities,  as  discussed  previously  in 

Section 4.2.3.
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Stakeholder Requirements Change

A stakeholder requirements change may occur at any time during the specification, 

design,  or  implementation  of  the  system,  or  indeed  after  deployment  with  changes 

required during maintenance. The scope and impact of this type of change is impossible to 

predict.  A  change  may  range  from  a  simple  re-prioritisation  of  previously  identified 

requirements; spurring a need to revisit the trade-offs made involving them, or a newly 

introduced goal for the system to achieve. As an example, the former case is discussed 

below.

The  core  of  the  adaptive  image  viewer's  need  for  adaptation  is  that  the  relative 

priorities of the “Maximise Perceived Speed” and “Minimise Memory Usage” softgoals vary 

in differing environmental conditions, and that no one balance can be reached that is 

acceptable across all the sets of environmental conditions in which the system is expected 

to operate. Thus, a shift in the relative priorities of these requirements makes a significant 

change to the desired behaviour of the system overall. To illustrate this, the priorities of 

the two softgoals in the S1 target system shall be adjusted.

It is discovered that, when operating in low network latency conditions (S1), the other 

applications running on the adaptive image viewer's hardware require far less memory 

than  previously  anticipated.  Thus,  the  need  to  conserve  memory  in  S1 is  diminished. 

Unfortunately, this is  insufficient to allow the use of the previously discussed learning 

cache in S1: it simply uses too much memory. In S2, the image viewer has been adjudged to 

have a greater need for memory than the other applications, and thus the cost in terms of 

memory of the learning cache remains acceptable. Returning to S1,  Figure 26 shows the 

previously reached specification decisions.
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The previous rationale justifying the decision not to use cache is identified as being 

that the speed increase is unnecessary in S1 (and thus the cost in terms of memory usage is 

unjustified). When the learning cache is introduced into the S1 target system model, the 

relative affordability of each of the cache's memory usage can be captured with claims as 

shown on Figure 27. The associated Claim Refinement Model, in this case, would feature 

claims of the available memory, and the expected consumption of each type of cache to 

support the decision.
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Of  course,  this  example  is  highly  contrived,  its  presence  shows  merely  that  some 

stakeholder requirements changes  may be more easily handled with the availability of 

decision rationale, which was eluded to by the “indeterminate” in Table 2 on page 77. The 

potential  scope  of  stakeholder  requirement  changes  varies  significantly,  and thus  it  is 

infeasible for a model to offer supporting traceability information to cover all scenarios. 

To  conclude,  this  section  has  presented  and  discussed  examples  of  each  of  the 

previously identified classes of change. It has demonstrated how ReAssuRE models, with 

their  additional  rationale  recorded  for  traceability  can  be  used  to  better  support  the 

process  of  change  for  DAS  specifications,  which  this  thesis  argues  are  likely  to  be 

frequently encountered. 
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5.2 Policy Derivation

The research objectives  presented in  Section  1.3 included answering the following 

question:

To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

If the answer to this question is “entirely”, one way to prove so is to demonstrate an 

ability to derive the policies controlling the DAS's adaptive behaviour from the models 

codifying  the  environmental  analysis  and  configuration  decisions,  such  as  ReAssuRE 

models. Adaptation policies state the trigger condition for an adaptation, as well as the 

reconfigurations performed to achieve it. Thus, from a policy-derivation perspective, there 

are two key pieces of information to ascertain from the models:

1. the differences in decision outcomes between target systems and

2. the trigger condition that prompts the transition between target systems

The first piece of information can be obtained by comparing the Level-One SR models 

of the appropriate target systems. The Level-One SR models for each of the adaptive image 

viewer's two target systems, first presented in Figure 26 and Figure 4, on pages 94 and 54, 

respectively, are depicted side-by-side in Figure 28.
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By comparing the two Level-One SR models in  Figure 28, it is possible to infer the 

component substitutions involved in transitioning from S1 to S2 and vice versa. The precise 

component (or class) names associated with each selectable task can be placed in a lookup 

table when generating policies. As Figure 28 shows, the only difference between the two 

target systems is the means by which the “Load Data” goal is satisfied. In the D1 domain, S1 

satisfies the goal with the task: “Don't use Cache”, and in D2, S2 opts for “Use Cache”. Thus, 

to  transition  from  S1 to  S2,  the  adaptation  policy  must  specify  that  the  component 

associated with “Don't Use Cache” is disabled, and that associated with “Use Cache” is 

enabled. For the reverse transition, the inverse is true.

The  second  piece  of  information,  the  condition  which  triggers  the  adaptation,  is 

ascertained by examining  the Level-Two model  associated  with  the  transition.  In  the 

ReAssuRE  process,  a  Level-Two  model  is  produced  for  each  valid  transition,  so  the 

presence or absence of a model for a transition speaks to the need to produce policy rules 

to specify it. 

The Level-Two model for the S1 to S2 transition was depicted in Figure 11 on page 68 

(Section  4.3).  As  discussed  in  Section  4.3,  ReAssuRE  Level-Two  models  detail  three 

different elements of a DAS's adaptive infrastructure: the monitoring mechanism, which is 

responsible for monitoring environmental parameters, aggregating the data and providing 
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it  to  the  decision-making  mechanism.  The  decision-making  mechanism  uses  the 

monitoring data to determine when adaptation is necessary, using an adaptation trigger to 

signal the adaptation mechanism, which effects the adaptation. Clearly, it is the adaptation 

trigger  which  is  of  interest  here,  and  it  can  be  identified  in  Figure  11 as  the  “Fire 

HIGH_LATENCY  Event”  task.  Thus,  the  two  pieces  of  information  highlighted  as 

required at the start of the section, for the S1-S2 transition, are:

1. “Load Data” being satisfied by “Use Cache” instead of “Don't Use Cache” and

2. the adaptation trigger: the firing of the “HIGH_LATENCY” event

These two pieces of  information are sufficient to write an Event-Condition-Action 

(ECA) rule for the reconfiguration. Figure 11 shows the ECA rule for the S1-S2 transition 

as a snippet of XML, as used by the GridKit adaptive middleware [39] to specify adaptive 

behaviour.

The  snippet  of  adaptation  policy  depicted  in  Figure  29 specifies  the  so-called 

configuration  framework  [39] used  by  the  reconfiguration,  which  in  this  case  is  the 
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<ReconfigurationRule>
<FrameWork>Cache</FrameWork>

<Events>
<Event><Type>HIGH_LATENCY</Type><Value/></Event>

</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Cache</Name>

</Reconfiguration>
</ReconfigurationRule>

Figure 29: Snippet of Adaptive Image Viewer's Adaptation Policy
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“Cache”  framework.  A  configuration  framework  abstracts  over  the  different  possible 

combinations of components in use by the DAS (or a subsystem) at a particular time, and 

presents a common, stable, interface to the business logic developers.

The  “Events”  section  of  the  policy  specifies  the  event(s)  that  will  trigger  the 

adaptation. Events may trigger adaptation merely by being fired (as in this case), or may 

only do so if a specific value is associated with the event. The “Reconfigurations” section 

of the policy specifies which reconfigurations must be performed as part of the adaptation. 

In this case, the only reconfiguration performed enables the file cache.

The process  of policy derivation is  amenable to  automation,  which can potentially 

reduce the time taken writing adaptation policies, which is particularly advantageous if a 

DAS's specification is liable to change over time, as argued in Section 5.1.1. Automation 

also reduces the scope for error during the derivation process, which increases confidence 

that the final adaptive behaviour of a DAS corresponds to the outcomes of decisions taken 

during early-phase RE.

High-level,  descriptive  pseudocode  for  the  algorithm  used  to  perform  the  policy 

derivation is included as Appendix D – Pseudocode for Policy Generation. However, the 

algorithm as implemented for the tool support described later in this section, makes two 

important assumptions about the supplied Level-Two model:

1. The Level-Two model has a “Fire Event when Environment Changes” task.

2. The Trigger task is connected to the above task, and the task label begins with 

the word “Fire”

Thus, the tool support presented in this subsection for policy generation is dependent 

on the supplied Level-Two model conforming to a similar template as that illustrated in 

Figure 11. Although all the Level-Two models encountered during the preparation of this 

thesis have been near identical, and have met the two requirements above, it may be that 
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some DAS models will not confirm to this template. In such cases, a new trigger-finding 

algorithm will need to be found to allow the policy derivation method to function.

To demonstrate automated policy derivation, this thesis presents a command-line tool 

capable  of  producing  adaptation  policies  compatible  with  the  GridKit  adaptive 

infrastructure  [39] from a  collection of  ReAssuRE models  using the method discussed 

above.  The  tool  operates  on  saved  ReAssuRE  models  produced  using  the  OME3  i* 

modelling tool [84], and takes command-line arguments as specified in Table 3 below:

Command Line Parameter Purpose

-l1 Comma-separated list of Level-One models

-l2 Comma-separated list of Level-Two models

-f Configuration framework name

-t Class name lookup table

-o Output file name for generated policy

Table 3: Command-Line Arguments of Policy Generation Tool

The “l1”  and “l2”  parameters  specify the file  names of  the ReAssuRE models  from 

which the adaptation policy is to be generated. The “f” parameter specifies the name of the 

configuration  framework  used  by  the  policy.  The  “t”  parameter  specifies  a  text  file 

containing  class  names  and  associated  model  element  names,  which  allows  human-

readable element names to be used in the ReAssuRE models and specific class names to be 

used in the adaptation policy. Finally, the “o” parameter specifies the file name to which 

the generated policy should be written.

For illustrative purposes, a screen-shot of the tool performing the policy generation is 

included  below as  Figure  30.  The  complete  adaptation policy  for  the  Adaptive  Image 

Viewer,  as  generated  by the tool  is  included in full  as  Appendix  A – Image Viewer's

Adaptation Policy.
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Although an ability to derive policies for a specific middleware implementation from 

ReAssuRE models is sufficient to demonstrate a clear link between the decisions codified 

in the models and a DAS's eventual adaptive behaviour, the utility of the tool is restricted 

to any DAS using that specific middleware as an adaptive infrastructure. To combat this 

restriction, the tool has a second mode of operation, which instead of generating policies 

for a specific adaptive middleware; outputs the derived adaptive behaviour to a domain 

specific language designed specifically for this purpose.

The Genie  Domain Specific  Language (DSL)  [107] allows adaptive  behaviour  to  be 

specified and expressed independently of adaptive infrastructure, and there is also a visual 

modelling  tool  based  on  the  MetaEdit+  modelling  meta-tool  [108] available  to  allow 

adaptive  behaviour  expressed  in  the  Genie  DSL  to  be  manipulated  visually.  Adaptive 

behaviour  expressed  in  the  Genie  DSL  can  be  exported  from the  tool  in  the  format 

required by one of several adaptive infrastructures, as detailed in [107].

Figure  31 and  Figure  32 depict  the  tool  transforming  adaptive  behaviour  from 

ReAssuRE models to the Genie DSL, and the resultant model exported from the Genie 

visualisation tool, respectively.
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Figure 31: Screen-Shot of the Genie DSL Derivation Tool
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The Genie model depicted in  Figure 32 takes the form of a feature model  [109], as 

frequently  encountered  in  software  product  line  circles.  Feature  models  illustrate  the 

combinations  of  features  that  different  related  software  products  within  a  family  (a 

product line) provide. By way of an analogy, a DAS can be considered as a product line, 

with  each  individual  target  system  considered  a  product  [110].  Each  product  (target 

system)  select  different  combinations  of  features  (decision  outcomes,  or  individual 

components) from those available.

The triangles  in  Figure 32 marked with “VP” represent a variation point,  where a 

choice is made to specify (or omit) a feature in an individual product within the product 
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line.  The rectangles marked with a “V” are variants,  representing a feature within the 

product line. The squares at the bottom of  Figure 32 represent individual products, and 

represent DAS target systems in GENIE models. The DAS in Figure 32 is itself a variation 

point, capable of using the S1 or S2 feature (target system). The other variation point, “Load 

Data”,  corresponds  to  the  identically  named task  in  the  two Level-One SR models  in 

Figure 28, and can be specified using either of the linked variants: “No Cache” or “Cache”.

To conclude, this section has demonstrated it possible to derive a DAS's adaptation 

policies  from  ReAssuRE  Level-One  and  Two  models  directly  and  automatically.  The 

environmental analysis and configuration decisions codified in the ReAssuRE models are 

transformed into a DAS's adaptive behaviour, which directly answers one of the research 

questions posed in Section 1.3:

To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

As such, it is reasonable to answer the research question: “entirely”. The automation of 

the method, as demonstrated by the tool support introduced, is also sufficient to answer a 

second research question posed in Section 1.3:

Given  that  both  the  information  from  the  environmental  analysis  and  the

configuration decisions are subject to change, how can the workload of deriving a

DAS's adaptive behaviour be reduced?

The workload involved in deriving a DAS's adaptive behaviour manually is significant, 

and the process potentially error-prone. If, as argued in Section 5.1.1, a DAS's specification 

is liable to  change,  the cost  associated with re-deriving adaptive behaviour potentially 

multiple  times  in  response  to  changes  could  become  prohibitive.  The  automation 

presented  in  this  section  significantly  reduces  the  time  taken  to  re-derive  adaptive 

behaviour, and eliminates the possibility of human error from the derivation process. This 

policy derivation work has also been reported in preparation for this thesis [111].
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5.3 Requirements Validation

Specifying a system capable of adapting its behaviour to suit a volatile environment is a 

difficult task,  and any eventual specification should be subject to significant validation 

effort to ensure that the behaviour specified for given sets of environmental conditions is 

appropriate. Claims in ReAssuRE models can be used to highlight areas of uncertainty in 

the reasoning behind a DAS's specification, and by developing validation scenarios seeking 

to  explore  the  likelihood  and  consequences  of  deficiencies.  This  section  introduces  a 

method  by  which  key  validation  scenarios  can be  identified  using  ReAssuRE models, 

supporting DAS requirements validation, as previously reported by Welsh & Sawyer [88].

Claims in ReAssuRE models can vary in the degree of certainty held in them by the 

analyst. Some claims are axiomatic, others little more than assumptions that were needed 

to reach a decision. If a claim is wrong, the performance of the DAS may be unsatisfactory, 

the DAS may exhibit harmful emergent behaviour, or the system may fail completely. As 

such, claims should be validated where possible to ensure their correctness. Unfortunately, 

the complex and uncertain nature of the environments DASs are developed for,  along 

with the likelihood of analysts working with incomplete knowledge,  means that some 

claims will prove difficult if not impossible to validate with complete assurance during the 

RE process. In these cases, it is beneficial to examine the behaviour of the DAS if a claim is 

proven false.

ReAssuRE models allow the analyst to examine the potential impact of a claim's falsity, 

by tracing the impact throughout models. In cases where a bottom-level claim (that is, a 

claim underpinning a decision on a Level-One SR model) is affected by a claim's falsity, 

some action may be necessary to better understand a DAS's behaviour if such a scenario 

manifested itself. This thesis uses the term validation scenario for such activity, but does 

not prescribe the form of a validation scenario. Most obviously, validation scenarios could 

take the form of test cases executed to verify the DAS's behaviour in the circumstances 

covered  by  the  validation  scenario  complies  with  set  criteria.  However,  in  some 

circumstances simulation, modelling or static reasoning may be more appropriate.
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In keeping with the qualitative nature of the reasoning supported by i*, the ReAssuRE 

process  supports  reasoning  with  the  degree  of  uncertainty  about  a  claim in  a  simple 

qualitative manner. A claim that is axiomatic is afforded the label  unbreakable, whilst a 

claim in which a low degree of confidence is held is termed uncertain. These two labels 

are two extremes of the confidence scale, a claim that lies between the two extremities is 

termed qualified. In borderline cases in which it is difficult to classify claims as uncertain 

or  qualified,  the  consequences  of  claim falsification  may be  taken  into  account,  with 

borderline  claims classified  as  uncertain  if  the  consequences  of  the  claim not  holding 

appear serious.

Returning to the Claim Refinement Model for the S2 target system, first seen in Figure

6 on page 57, allows the claims to be classified and assigned confidence labels. Assigning 

confidence labels  to all  but the bottom-level  claim on  Figure 6 and propagating them 

throughout the model allows us to establish the degree of confidence held in the bottom-

level claim. The “Latency is High in S2” claim is axiomatic and thus should be labelled 

unbreakable:  high  latency  is  the  defining  feature  of  S2.  The  “caching  will  improve 

perceived speed” claim, on the other hand, is uncertain: as we saw in Section 5.1.2, images 

being accessed non-sequentially could easily render the claim invalid.

To propagate the uncertainty labels throughout the model, rules similar to those used 

in Section  5.1.2 on page  82 to propagate “broken” labels throughout a claim refinement 

model are used, these are:

• If a claim is derived from a single claim, then the derived claim inherits the label of the 

upper-level claim.

• If a claim is derived from two or more AND-ed claims, then it inherits the least certain  

label of its supporting claims.

• If a claim is derived form two or more OR-ed claims, then it inherits the most certain 

label of its supporting claims.
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A  bottom-level  claim  that,  once  label  propagation  has  taken  place,  is  classed  as 

unbreakable  has  little  uncertainty  underpinning  it.  A  bottom-level  claim  classed  as 

uncertain or qualified has a higher degree of uncertainty,  and should be the target of 

validation work, especially so in the case of an uncertain bottom-level claim. Applying the 

rules above to propagate uncertainty labels throughout Figure 6 yields Figure 33.

The bottom-level claim in Figure 33 has been classified as uncertain. As such, there is a 

need to explore how the DAS would behave in circumstances where the claim doesn't 

hold. Developing a validation scenario where the behaviour of the DAS can be simulated, 

examined or tested becomes a matter of identifying a set of environmental conditions in 

which a given combination of bottom-level claims hold (or do not hold). For the adaptive 

image viewer, such a validation scenario would likely reveal that in such circumstances 

the adaptive image viewer uses memory to facilitate caching whilst deriving no benefit in 

terms of perceived speed from doing so.

If the outcome of a validation scenario is acceptable, then there is likely no need to 

refine the DAS's requirements specification for the target system under study, and some 

uncertainty has been mitigated. If the outcome is more problematic, this signifies a need 

to  revisit  the  specification of  the  target  system under  study,  and the assumptions  the 

specification is based upon.
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For target systems with greater numbers of bottom-level claims, it becomes necessary 

to  consider  a  validation  scenarios  for  each  possible  combination  of  falsified  and  held 

bottom-level claims, which can amount to a significant validation burden as the number 

of required validation scenarios (T) increases with the number of bottom-level claims (n) 

with the formula T=2n-1. One is subtracted because the combination in which all claims 

hold is the envisaged domain. 

When dealing with a large number of bottom-level claims, there is clearly a benefit in 

targeting validation resources at uncertain claims (and combinations including uncertain 

claims), as scenarios involving them are more likely to occur. The explosive increase in 

required validation scenarios as the number of bottom-level claims rises, along with the 

fact  that  only a sub-set  of a  model's  bottom-level  claims will  be considered uncertain 

means that this targeting can yield a significant reduction in the number of validation 

scenarios required, as demonstrated in Section 7.5.

The  act  of  deriving  validation  scenarios  from  combinations  of  held  and  falsified 

bottom-level claims rather than from combinations of underlying claims greatly reduces 

the number of validation scenarios that need to be constructed by grouping together all 

combinations of broken underlying claims that have a specific effect, i.e. breaking a given 

bottom-level claim,. Furthermore. The procedure allows scenarios rendered irrelevant by 

axiomatic claims to be removed from consideration.

To conclude, this section has introduced a method of classifying claims based on the 

degree of certainty held in them by the analyst. It has also demonstrated how uncertainty 

labels propagate throughout claim refinement models, and how validation scenarios may 

be derived from a particular combination of bottom-level claims holding or otherwise to 

aid  in  DAS  requirements  validation.  The  work  presented  in  this  section  has  been 

published in full [88].
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5.4 Chapter Conclusion

Although  a  DAS possesses  a  limited  ability  to  adjust  its  behaviour  at  run  time  in 

response to  changes in the operating environment,  the complexity of the domains for 

which DASs prove most useful, coupled with the likely imperfect understanding of both 

the  environment  and  candidate  components  during  early-phase  RE  means  that  the 

specification for a DAS is liable to change.

ReAssuRE models support change by recording additional tracing information in the 

form of  claims,  which capture  the  rationale  behind decisions  and the assumptions  on 

which the rationale is based. This information eases the process of change in common 

scenarios, improving the efficiency of the change process.

A  DAS's  adaptive  behaviour  may  be  derived  from its  ReAssuRE  models,  and  the 

derivation method can be automated. A tool that transforms ReAssuRE models into either 

adaptation policies directly, or to a DSL designed to represent adaptive behaviour has been 

introduced, which can save a significant amount of time during the derivation process, as 

well as reduce error.

Thus, the bulk of the time spent in the change process is spent updating ReAssuRE 

models rather than re-specifying adaptive behaviour. The improved traceability support of 

ReAssuRE models minimises the time taken in performing these updates.

The chapter has also answered three of this thesis's research questions, which were 

presented in Section 1.3:

Can the information from the environmental analysis and configuration decisions

be codified in models, and is it useful to do so?

Information from the environmental analysis and configuration decisions taken during 

early-phase RE can be codified in models, with ReAssuRE models containing more of this 

information  than  previously  possible.  The  utility  of  doing  so  is  demonstrated  by  the 

enhanced traceability support discussed in Section 5.1.2.
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To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

A DAS's adaptive behaviour is entirely a derivation of the environmental analysis and 

configuration decisions taken during early-phase RE, as demonstrated by the ability to 

both perform and automate this derivation from the ReAssuRE models, which codify the 

results of environmental analysis and configuration decisions.

Given  that  both  the  information  from  the  environmental  analysis  and  the

configuration decisions are subject to change, how can the workload of deriving a

DAS's adaptive behaviour be reduced?

The  workload  associated  with  deriving  a  DAS's  adaptive  behaviour  is  significantly 

reduced by automating the derivation process. The workload associated with re-deriving 

adaptive  behaviour  in  response  to  a  specification  change  is  reduced  by  the  enhanced 

traceability support of ReAssuRE models  which helps trace the impact of change in a 

DAS's specification, as well as by the automated derivation tool.

The need to validate requirements for a DAS is particularly acute given the relative 

uncertainty of the environments in which they operate. The chapter has demonstrated 

how claims in ReAssuRE models act as markers for uncertainty about the environment or 

expected  behaviour,  and  demonstrated  how  reasoning  with  a  simple  scheme  of 

uncertainty labels allows assumptions to be grouped by the effect of their falsification, and 

for the effects themselves to be explored using validation scenarios.

The next chapter builds upon the work discussed in this, focussing on how ReAssuRE 

models can be used at run time, by a DAS itself.
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6 ReAssuRE at Run Time

The  previous  chapter  discussed  uses  of  ReAssuRE  models  at  design  time, 

demonstrating  their  improved  traceability  support  and  an  ability  to  derive  adaptation 

policies from the models directly. This chapter focusses on using the same models at run 

time to guide the DAS's adaptation.

For some time, systems have been able to monitor their performance, and the degree 

to which key requirements are satisfied [93] [95]. This monitoring data would typically be 

used  by developers  for  tuning and maintenance  purposes.  The emergence  of  adaptive 

infrastructures  allowing  systems  to  adjust  their  behaviour  at  run  time  in  response  to 

monitoring data has bred research interest in systems that use requirements models to 

help interpret  monitoring data,  with the adaptive infrastructure  providing a  means to 

effect  behavioural  change  to  act  upon  it.  This  emerging  practice  is  referred  to  as 

models@run.time  [112]. This chapter demonstrates the use of ReAssuRE models at run 

time to allow a DAS to adjust the configuration of a target system in circumstances where 

monitoring data indicates the current configuration is sub-optimal.

The tool support for adaptive policy generation discussed in Section  5.2 operates by 

loading,  parsing  and  reasoning  with  ReAssuRE  models  programatically.  The  same 

techniques can be leveraged by a DAS to reason with ReAssuRE models at run time.

The ability to reason-with ReAssuRE models at run time, coupled with an ability to 

modify  the  models  in  response  to  monitored  environmental  conditions  offers  the 

possibility of a DAS performing some of the specification changes demonstrated in  5.1.2 

autonomously. The chapter introduces a class of DAS called a Model-driven Dynamically 

Adaptive System, abbreviated to m-DAS. This class of DAS uses design-time models to 

guide run-time adaptation. Although the term m-DAS covers any DAS that uses models to 

guide  adaptation,  a  m-DAS  using  ReAssuRE  models  and  requirements  monitoring 

techniques [30] serves as an example of the class of system, allowing this thesis to explore 

the implications of constructing systems with a greater degree of autonomy than before.

Page 111



6  ReAssuRE at Run Time

The  chapter  discusses  the  run-time  representation  of  ReAssuRE  models,  the 

environmental  monitoring  that  allows  the  models  to  be  modified  in  memory,  and 

demonstrates  how  a  m-DAS  may  adjust  its  adaptive  behaviour  in  response  to  these 

modifications. The chapter also examines the potential for damaging emergent behaviour, 

and demonstrates how a variant of the validation scenario derivation technique discussed 

in Section 5.3 can offer testing scenarios aiming to uncover potential emergent behaviour.

6.1 Run-Time Representation of ReAssuRE models

When  implementing  tool  support  for  the  policy  derivation  method  discussed  in 

Section  5.2, it was necessary to develop code to load, parse and reason with ReAssuRE 

models.  As well as being necessary for tool support,  this also offered the possibility of 

allowing a DAS to reason with ReAssuRE models  autonomously.  This,  combined with 

monitoring techniques discussed in Section  6.2 could allow a m-DAS to derive a new, 

unspecified configuration when operating outside its foreseen operational envelope.

Three types of ReAssuRE models can be parsed and loaded by a m-DAS at run time: 

Level-One  Strategic  Rationale  and  Claim  Refinement  Models,  along  with  Level-Two 

models.  Level-Two  models  are  used  solely  when  deriving  new  adaptation  policies, 

whereas Level-One SR and Claim Refinement Models are reasoned with to enable new 

configurations to be devised and adopted.

An i* model can be thought of as an acyclic digraph, whose nodes are one of several 

defined i* elements, and whose edges are one of several defined i* relationships. Meaning 

is  inferred  by  examining  the  types  of  elements  connected  together,  and  the  type  of 

relationship connecting them. The OME3 i* modelling tool [84] produces i* models saved 

in the “.tel” (short for telos) file format, which are essentially textual representations of 

each of the elements and relationships in a model,  along with a section on view-state, 

which controls layout. To reason with models, the view-state information can safely be 

discarded, and a logical representation of the model is constructed by instantiating objects 
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representing each encountered i* element, linking them together where appropriate with 

specified relationships. As such, an in-memory representation of an i* model is little more 

than a standard digraph, with most of the complexity lying in the ability to reason with 

the model.

Both policy derivation, as discussed in Section  5.2, and run-time reasoning focus on 

identifying goals in Level-One ReAssuRE models that may be satisfied by two or more 

tasks. These tasks are connected to the goal via a means-end link running from each task 

to  the goal.  Internally,  these goals  with alternate satisfaction means are referred to as 

“variation points”, and may be identified by traversing the digraph in memory to identify 

the pattern described.

Level-Two  models  are  analysed  to  identify  the  trigger  condition  that  warrants  a 

transition  between  target  systems.  This  is  achieved  by  locating  the  decision-making 

mechanism's  task:  “Fire  event  when  environment  changes”,  present  on  all  ReAssuRE 

Level Two models.  This  task is  decomposed into at least  two sub-tasks,  with one task 

typically  concerning  the  identification  of  an  environmental  change.  The  sub-task  of 

interest, is typically named “Fire X Event”, in which “X” is the name of the trigger event of 

interest. Identifying the correct sub-task is a matter of finding the task with a name in this 

format.

The  most  complex  reasoning  performed  by a  m-DAS at  run  time  with  ReAssuRE 

models occurs in Claim Refinement Models. The label propagation method described in 

Section 5.3 has been implemented for the “broken” label, which signifies that a claim no 

longer holds. The use and propagation of this label is discussed in the next section.

6.2 Assumption Monitoring and “broken” Label Propagation

As discussed in Section 1.2, the complexity of domains for which DASs are conceived 

coupled with uncertainty in both the nature of the domain and the behaviour of DAS 

components or a DAS as a whole means that a DAS's specification is liable to change. One 
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class of change discussed in Section 5.1.1 was signalled by a broken assumption. This thesis 

introduces  the  concept  of  assumption  monitoring,  which  is  analogous  to  the  more 

established  activity  of  requirements  monitoring  [30]. In  requirements  monitoring,  the 

performance of the system with respect to satisfying key requirements is recorded and 

monitored to allow stakeholders to better understand the system's performance and to 

feed back into system refinements made during maintenance.

Except  for  some  work  focussing  on  automatically  deriving  monitors  for  quality 

features  (typically  bound  together  in  QoS  concerns  [95], the  means  of  monitoring 

requirements  either  directly  or  via  some  surrogate  property  are  typically  devised 

manually, on a case-by-case basis. This thesis proposes that a similar approach is adopted 

for  monitoring  the  assumptions  on  which  DAS  specifications  are  based,  by  devising 

monitors  where  feasible  for  assumptions  recorded  in  ReAssuRE  Claim  Refinement 

Models. It is not possible to monitor all assumptions directly. However, assumptions for 

which monitors can be devised, and where monitoring data suggests the assumption no 

longer holds, are broken, that is, have a “broken” label applied to them, and this status 

may be propagated to child claims.

The  ability  of  a  m-DAS  to  reason  with  models  of  its  own  behaviour  offers  the 

possibility of a m-DAS altering its configuration in response to changes in the models, 

including changes as a result of an assumption no longer holding. In this respect, a m-DAS 

devised to reason with ReAssuRE models,  and which performs assumption monitoring, 

has the potential to adjust its behaviour not only to foreseen changes in the environment, 

but to circumstances outside those for which the m-DAS has had behaviour explicitly 

specified.

The basis of this ability to adjust behaviour in response to assumptions found to no 

longer  hold  is  in  the  modification of  ReAssuRE Level-One  SR models  in  response  to 

bottom-level claims being broken on the associated Claim Refinement Model. In essence, 

much of  the  work  performed  on  uncovering  a  broken  assumption  in  Section  5.1.2 is 

automated. The final step discussed in Section 5.1.2: re-taking decisions that were reliant 

(either  directly  or  indirectly)  on  the  broken  assumption  is  particularly  challenging. 
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Although it  is  possible via  model analysis  to  identify assumptions reliant on a broken 

assumption, inferring the decision outcome that would have been reached had the faulty 

assumption  not  been  made  at  design  time  is  impossible  in  many  cases.  A  particular 

problem  is  that  contributions  on  Level-One  Strategic  Rationale  models  may  become 

deadlocked. 

To prevent deadlock, when devising a monitor for a particular assumption, the analyst 

can specify one of three actions to be performed on the Level-One Strategic Rationale 

model in the event of a bottom-level claim being broken either directly or by propagation. 

More drastic action reduces the chance of deadlock but increases the chance of a needless 

or unjustified change in configuration.

If a bottom-level claim on a Claim Refinement Model is broken, either demonstrably 

by analysing monitoring data, or by label propagation after a supporting claim is broken, 

then one of three actions can be performed on the corresponding Level-One SR model. 

These are, in increasing order of strength with “3” as the strongest:

1. Remove the claim from the Level One model.

2. Invert the claim's contribution to the link to which it is attached.

3. Remove  from  consideration  the  task  whose  selection  is  supported  by  the 

claim.

The risk of a stronger model modification causing the m-DAS to make an unjustified 

configuration change means that weaker model modifications, which appear earlier in the 

above list, are preferred whenever possible. 

To  reduce  the  chance  of  deadlock,  a  Level-One  Strategic  Rationale  model  and  its 

associated claim refinement model can be constructed using many claims, so that should a 

single  claim  be  broken  and  removed,  the  affected  decisions  rely  on  other  claims. 

Unfortunately, this type of construction requires several claims per decision on the Level-
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One Strategic Rationale model, each needing supporting on the Claim Refinement Model. 

This increases the complexity of the ReAssuRE models to such a degree as to be infeasible 

in some cases, signifying the need for stronger modifications.

Taking stronger action on the Strategic Rationale model when invalidating a bottom-

level claim on its associated Claim Refinement Model can yield the same behaviour as a 

more complex lattice of claims, whilst using significantly fewer claims. However, more 

drastic  modifications  to  the  ReAssuRE  models,  especially  when  multiple  such 

modifications are made to a model, can potentially lead to a configuration being adopted 

that is  radically different from that envisaged by the m-DAS's  creators.  Such radically 

altered  configurations  carry  a  significant  risk  of  unpredictable  and  possibly  damaging 

emergent behaviour. 

Clearly,  the  model  modification  used  when  invalidating  a  bottom-level  claim  in 

response  to  a  given monitor's  data  needs  to  be  chosen  carefully.  Each type  of  model 

modification is discussed, in turn and with an example, in the following paragraphs.

As mentioned previously, removing a broken bottom-level claim from a Level-One 

model  is  preferable.  Using  several  claims  it  is  possible  to  offer  more  control  of  the 

configuration the m-DAS falls back to should a claim fail.  Using the “break” link in a 

Claim Refinement Model also allows broken bottom-level claims to be placed on a level-

one Strategic Rationale model. An initially broken claim has no effect unless it is enabled 

by monitoring or propagation, and can be used to control a m-DAS's configuration should 

an assumption thought false at design time be found to hold at run time. 

Returning  to  the  adaptive  image  viewer  example,  review  the  Level-One  Strategic 

Rationale and Claim Refinement Models for the S2 target system. These were depicted in 

Figure 4 on page 54, and Figure 6 on page 57, respectively.

Examining  Figure  6,  both  supporting  claims  are  amenable  to  monitoring,  with 

monitors potentially trivially devised for both. “Latency is High in S2” could be monitored 

by  measuring  the  latency  encountered  when  loading  files.  “Caching  will  Improve 

Perceived Speed” could be monitored by measuring the time taken to display images, and 
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comparing  it  to  the  underlying  latency  encountered  (as  monitored  for  the  previous 

assumption).  However,  given  that  high  latency  is  a  defining  characteristic  of  the  D2 

domain, if latency should fall then the environment would be considered to be in the D1 

domain, with the DAS adopting the S1 target system. As such, monitoring the “Latency is 

High in S2” assumption is needless.

If the “Caching will Improve Perceived Speed” monitor were to yield data suggesting 

the assumption doesn't hold (in Section 5.1.2, this was because images are being accessed 

non-sequentially) then, just as in the manual example in Section 5.1.2, a “broken” label is 

applied to the claim. Following the rules of propagation set out on page 106 in Section 5.3, 

the “Extra Speed Needed in S2” claim's holding depends upon both supporting claims also 

holding. Thus, the “broken” label propagates to the bottom-level: “Extra Speed Needed in 

S2” claim, invalidating it also. The modified claim refinement model is depicted in Figure

34 below.

Because the Level-One SR model depicted in Figure 4 has no other claims, removing 

the  now  invalidated  bottom-level  claim  from  the  model  will  lead  to  the  decision 

governing  the  use  of  the  cache  becoming  deadlocked.  It  is  possible  to  prevent  this 

deadlock without using any stronger model modification by adding an alternate claim to 

both the Strategic Rationale and the Claim Refinement Model. On the claim refinement 

model, a “break” contribution can be used to force the alternate claim to start broken, and 
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only exert influence on the decision governing cache use if  reinstated.  The Level-One 

Strategic Rationale and Claim Refinement Models showing this construction are depicted 

in Figure 35 and Figure 36. 
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The “Can't Increase Speed” alternate claim in Figure 36 is broken from the outset, and 

has no effect on the decision whether or not to use a cache: its presence is ignored given 

its “Broken” label. However, should the “Extra Speed Needed in S2” claim be broken, the 

“break” link between it and the “Can't Increase Speed” claim has the effect of inverting the 

“Broken” label during propagation. This means that the “Can't Increase Speed” claim is 

reinstated  on the Strategic  Rationale  model  and the “Broken”  label  is  removed.  Once 

reinstated,  the  “Can't  Increase  Speed”  claim  breaks  the  “Use  Cache”  task's  positive 

contribution to the “Maximise Speed” softgoal, arguing against the use of the cache. The 

now broken “Extra Speed Needed in S2” claim is removed from the SR model.

 The configuration derived from the models depicted in Figure 35 and Figure 36 with 

the “Extra Speed Needed in S2” claim broken, and the alternate “Can't Increase Speed” 

claim reinstated, would not use the cache in the S2 target system, Given that the adaptive 

image viewer has only a single possible variation point, and only two possible variations. 

Adding alternate claims to the models could be considered overly complex. Furthermore, 

the decision as to which eventualities should be catered for on a model is notoriously 

difficult, and is analogous to the decision of which obstacles to model when performing 

KAOS obstacle analysis. Thus, it may be preferable to use a stronger model modification 

technique to avoid the scoping difficulty. Using a stronger model modification technique 

will yield the same adaptive behaviour in this instance, without the need for additional 

model complexity. Inverting the original bottom-level claim's contribution to the Level-

One SR model when broken yields the model in Figure 37.
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In Figure 37, instead of the claim “Make”ing the positive contribution the “Use Cache” 

task makes to the “Maximise Speed” softgoal,  it  “Break”s it.  Now, instead of the claim 

supporting the use of the cache, it supports the selection of the “Don't Use Cache” task. 

Thus, the configuration of the adaptive image viewer's S2 target system would again, omit 

the cache. Note that there is no “broken” label on the claim in  Figure 37, - using this 

modification  means  that  there  is  no  need  to  discount  the  claim when evaluating  the 

model.

The strongest  model  modification that  may be  performed in  response  to  a  broken 

assumption  is  to  remove  the  task  that  the  claim  supports  the  selection  of  from 

consideration when re-making the decision. This modification is suitable if and only if a 

claim's  holding is  sufficient to  singularly justify the task's selection,  and its  absence is 

sufficient to render the selection of the task non-viable. Performing this modification in 

response to the “Extra Speed Needed in S2” claim no longer holding yields Figure 38.
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The same configuration is reached following this modification. Because there are only 

two viable decision alternatives, the only remaining alternative is to select “Don't Use 

Cache”. For decisions with three or more potential tasks for selection, specifying that a 

task should be removed from consideration should an assumption not hold is a valuable 

tool  in reducing the likelihood of  deadlock if  unexpected conditions  are  encountered, 

without complicating the ReAssuRE models.

6.3 ReAssuRE m-DAS architecture

As discussed in the chapter introduction, the use of the term m-DAS does not dictate 

that a system use ReAssuRE models to guide its adaptation. An m-DAS could also go about 

modifying models using means other than assumption monitoring. However, the use of 

ReAssuRE  models  and  assumption  monitoring  to  create  a  m-DAS  implies  a  specific 

architecture, a UML model for which is depicted below.
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In Figure 39, assumptions are codified as claims in models, and have monitors devised 

to validate them. In the event of a monitor determining that an assumption no longer 

holds, it raises an event. A model transformer acts on receiving the event, modifying the 

model. Once modified (and external to Figure 39), the policy generation method described 

in  Section  5.2 can be  used to  re-derive  adaptation policies  for  the  m-DAS,  with  new 

adaptation policies dictating new target system specifications. Each of the entities depicted 

in Figure 39 is discussed in more detail in the following paragraphs.

The “model” entity in Figure 39 covers both Level-One Strategic Rationale and Claim 

Refinement ReAssuRE models, discussed in Chapter  5. Assumptions are represented by 

claims in the models. “Monitor”s are devised to validate claims at run time. Should a claim 

be invalidated by monitoring data, an “event” is raised. The “event” entity represents a 

simple programmatic event, that may be fired by a monitor and listened for by interested 

parties. In the architecture described by Figure 39, the only interested party is the model 

transformer. It is this “transformer” entity that is key to a ReAssuRE-based m-DAS.
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The  “transformer”  entity's  role  is  to  make  adjustments  to  models  to  reflect  an 

assumption that no longer holds, as indicated by the monitor's event for which it listens. 

When  acting  upon  a  monitor  event  indicating  an  assumption  no  longer  holds,  the 

transformer invalidates  the claim representing the assumption on its  containing Claim 

Refinement Model by labelling it “broken”. The transformer then propagates the “broken” 

label  throughout  the  Claim Refinement  Model  using  the  label  propagation  algorithm 

described in Section 5.3. If a bottom-level claim on a Claim Refinement Model is labelled 

“broken”, the transformer makes one of the model modifications described in the previous 

section  to  the  corresponding  Strategic  Rationale  Model.  After  making  a  modification, 

adaptation policies need to be re-derived to take the model changes into account.

The  specific  model  modification  performed  by  the  transformer  in  response  to  a 

monitoring  event  is  controlled  by  a  monitoring  policy.  Like  adaptation  policies, 

monitoring  policies  use  an  XML  format,  and  specify  the  claim  to  be  invalidated  in 

response to  a named monitoring event.  The policy also  stipulates  which of  the model 

modifications should be performed on the Level-One strategic rationale model should the 

“broken”  label  propagate  to  a  bottom-level  claim.  Figure  40 depicts  a  snippet  from a 

monitoring policy devised for the adaptive image viewer. The policy defines the model 

transformations  that  take  place  in  response  to  the  previously  discussed  “Caching  will 

Improve Perceived Speed” claim being found invalid.
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 <MonitoringPolicy><MonitorRule>
   <Monitor><Event>event.CacheSlow</Event></Monitor>
   <Transformation>
    <Node type="claim">
     Caching will Improve Perceived Speed
    </Node>
    <Action>INVERT</Action>
   </Transformation>
 </MonitorRule></MonitoringPolicy>

Figure 40: Single Monitoring Rule from a Monitoring Policy
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In  Figure 40 above, the “MonitoringPolicy” element serves as a container for one or 

more  “MonitorRule”  elements,  which  define  a  single  model  transformation.  The 

“MonitorRule”  element  contains  two child  elements:  “Monitor”  and “Transformation”. 

The “Monitor” element specifies one or more “Event” elements, which stipulate the names 

of  the  events  which  signal  the  need  to  perform  a  model  transformation.  The 

“Transformation” element describes the model transformation required in response to the 

monitoring event; comprising of a “Node” element, which specifies the ReAssuRE model 

element upon which the modification is to be performed, and an “Action” element, which 

specifies which model modification is to be performed. Valid action types are “REMOVE”, 

“INVERT”  and  “EXCLUDE”;  which  correlate  with  the  three  model  modifications 

described in Section  6.2. The implemented model transformer, which will be discussed 

shortly, performs the “EXCLUDE” modification upon i* task elements in ReAssuRE Level-

One Strategic Rationale models. With this implementation, the determination of which 

task a claim supports (and thus which to exclude from consideration in a decision) is made 

by  the  analyst  at  design  time  instead of  by  the  m-DAS at  run  time  when using  the 

“EXCLUDE” transformation.

This  thesis  presents  a  proof-of-concept  model  transformer,  capable  of  listening for 

monitoring events raised by assumption monitors and performing the model modifications 

specified by a monitoring policy. Model modifications that result in a bottom-level claim 

being invalidated result in adaptation policies being re-derived from the updated models. 

The model transformer loads monitoring policies in the format illustrated by Figure 40. a 

m-DAS utilising the proof-of-concept model transformer adopts the model modification 

and reasoning architecture depicted in Figure 41.
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In Figure 41, pairs of Level-One Strategic Rationale and Claim Refinement Models are 

reasoned  with  by  the  model  transformer.  Individual  assumption  monitors  (devised 

externally) raise events, which the model transformer listens for. The monitoring policy in 

Figure 41 is loaded by the model transformer, controlling which model modifications are 

performed in response to which monitoring events. After model modification, a separate 

policy  derivation sub-system uses  the  changed  models  to  generate  updated  adaptation 

policies.

To conclude, this section has discussed the architecture by which a ReAssuRE-based 

m-DAS may be constructed. Monitors are devised for assumptions in claim refinement 

models, and in the event that monitoring data indicates an assumption is no longer valid 

the corresponding claim on the model is labelled “broken”. The “broken” label propagates 

throughout the Claim Refinement Model, and if it reaches a bottom-level claim, action is 

taken  on  the  Strategic  Rationale  model.  The  precise  action  taken  is  defined  in  a 

monitoring policy, and performed by a model transformer. The section has introduced a 
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demonstrative model transformer capable of performing model modifications as specified 

in a monitoring policy.

6.4 Uncovering Emergent Behaviour in m-DASs

Every DAS risks displaying emergent behaviour as a result of uncertainty about the 

environment in which it operates, uncertainty in the suitability of available components 

to anticipated environmental conditions, and uncertainty as to how the DAS will respond 

to  changes  in  the  environment.  A  DAS  may  adopt  a  sub-optimal  target  system 

configuration  in  some  circumstances,  or  adaptation  itself  may  have  some  unforeseen 

consequence.  Furthermore,  the  mis-identification  of,  or  overlap  between  boundaries 

between domains can lead to a DAS performing frequent transitions between two or more 

target systems, a problem known as “thrashing”.

The  additional  autonomy  granted  a  m-DAS,  in  terms  of  its  ability  to  adapt  to 

conditions outside those anticipated at design time, means that there is an even greater 

likelihood of encountering emergent behaviour. Unexpected combinations of components 

may be used,  or one target  system's configuration could,  in whole or in part,  be used 

outside its intended domain. For a DAS, it remains possible to guarantee that the system 

will always take the form of one of its specified target systems. a m-DAS offers no such 

guarantee, in that any of the target systems may have been modified.

Thus, the verification and validation of a m-DAS must ensure that emergent behaviour 

as  a result  of  model  modification is  both  not damaging,  and compliant with  specified 

behaviour  in  anticipated  conditions.  This  section  describes  a  modified  version  of  the 

requirements validation scenario derivation method discussed in Section  5.3 to identify 

conditions in which a m-DAS may exhibit emergent behaviour, and to prioritise those 

scenarios that are considered most likely to occur. Once these scenarios are identified, 

assurance  of  a  m-DAS's  behaviour  under  certain  sets  of  conditions  can  be  delivered 

through testing.
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In Section  5.3, claims were classified broadly by relative certainty, with less certain 

claims acting as markers for areas of uncertainty in developers' understanding of a domain 

or of expected behaviour. These areas of uncertainty could be explored using validation 

scenarios,  seeking to  eliminate  the  uncertainty,  or  at  the  very  least  to  ensure  that  its 

consequences are not serious. In this section, a similar classification is performed, with less 

certain claims highlighting a need to test to ensure model modification that may occur 

will not yield damaging emergent behaviour.

Of course, testing is not the only means of validating software: for a DAS or m-DAS, it 

may be possible to deliver an acceptable degree of assurance through monitoring, or by 

allowing full or partial human control over adaptation. This latter suggestion remains an 

interesting  and  relatively  unexplored  research  area,  and  there  may  well  be  scope  for 

methods and software supporting human-instigated or human-approved adaptation to be 

developed in the future. However, such approaches do not offer complete assurance, and 

the assurance they do offer comes at the expense of system autonomy. Thus, this section 

focusses on identifying key scenarios to validate m-DAS behaviour through testing.

m-DAS testing activity can be separated into two categories of activity: testing of a m-

DAS's business logic and of a m-DAS's adaptive behaviour. Testing of a m-DAS's business 

logic is akin to that carried out for traditional, non-adaptive systems. Testing a m-DAS's 

adaptive behaviour seeks to verify that the configurations adopted in given scenarios are 

optimal, or at the very least not damaging.

To test the adaptive behaviour of a conventional DAS, testing scenarios need to be 

designed for each of the target systems that can be selected, along with scenarios designed 

to test the DAS's ability to correctly identify which target system to adopt in each of the 

sets of expected operating conditions partitioned from the environment. This amounts to a 

considerable testing burden, but remains within the bounds of feasibility. Unfortunately, 

in order to fully test a m-DAS using assumption monitoring and model transformation as 

discussed in this chapter, it is necessary to identify and understand the m-DAS's scope for 

emergent  behaviour  completely.  To  offer  this  level  of  testing  coverage,  it  would  be 

necessary to devise scenarios for every possible combination of assumptions holding and 
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being broken. Each combination of assumptions holding or otherwise can be thought of as 

representing a testing scenario at the modelling stage.

If every possible combination of assumptions holding or otherwise needed to be tested 

to uncover emergent behaviour, the additional number of testing scenarios that would be 

required for each target system for a m-DAS over a standard DAS (T) is yielded by the 

following formula:  T=2n-1. The  n represents the number of bottom-level claims in the 

target system's Claim Refinement Model. Subtracting one removes the scenario in which 

all assumptions hold: the original target system design as tested in a standard DAS. This 

explosive  testing  burden  means  that  offering  complete  assurance  that  a  m-DAS  will 

exhibit no emergent behaviour as a result of its model modification is infeasible for all but 

the simplest m-DASs.

In  order  to  offer  an  acceptable  degree  of  assurance  against  damaging  emergent 

behaviour in m-DASS, some pragmatism is required: instead of devising testing scenarios 

for  every  possible  combination  of  assumption  holding  or  otherwise,  test  only  those 

combinations most likely to occur whilst omitting those impossible or unlikely. There is, 

of  course,  a  trade-off  between the desire to  minimise the number of testing scenarios 

devised (to minimise cost) and that of maximising assurance: devising testing scenarios for 

greater numbers of the less likely scenarios offers greater assurance at greater cost. The 

remainder of this section borrows (and adjusts) the claim classification method discussed 

in Section 5.3, to demonstrate the use of ReAssuRE models in pruning the testing space for 

m-DASs.

The method for identifying key requirements validation scenarios for DASs, discussed 

in  Section  5.3,  relies  on  applying  a  broad  classification  of  relative  claim  certainty  to 

underlying claims in Claim Refinement Models and labelling the underlying claims to 

reflect this classification. The applied labels are propagated throughout the model (and 

crucially, to bottom-level claims), and validation scenarios are devised to cover the least 

certain bottom-level claims to validate the assumptions on which they are based, or to 

verify that the consequences of the assumptions no longer holding were not damaging. 

Claims are classified in terms of certainty as either: unbreakable, qualified, or uncertain. 
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An unbreakable claims is  axiomatic,  whilst  an uncertain claim is  one in which a low 

degree  of  confidence  is  held.  A  qualified  claim  is  considered  relatively  safe,  and  fall 

between the two extremes of unbreakable and uncertain claims.

When  using  this  categorisation  to  prioritise  testing  scenarios  aiming  to  uncover 

emergent behaviour in a m-DAS, a slight change to the definition of the “Unbreakable” 

category is required. In this context, claims that the m-DAS has no means of monitoring 

directly  and  can  have  no  other  certainty  label  propagated  to  them are  considered 

unbreakable. Claims that are monitored may be considered only qualified or uncertain. By 

inference, an axiomatic claim need not have a monitor devised for it.  A claims that is 

unmonitorable and has no possibility of a broken label being propagated to it has no scope 

for causing emergent behaviour through its invalidation, and can as such be removed from 

consideration.

Returning  to  the  adaptive  image  viewer,  Figure  22,  in  Section  5.1.2 on  page  90, 

depicted a revised design for the S2 target system. A revised design is used because the 

original S2 target system for the adaptive image viewer has just one bottom-level claim, 

which is of little illustrative benefit here.

The revised S2 target system has a claim stating that the originally specified cache is 

ineffective in S2,  along with two claims supporting the selection of the newly devised 

learning cache, which uses simple machine learning to predict images likely to be loaded 

soon in order to cache them. Figure 21 on page 88 depicted the Claim Refinement Model 

supporting the three bottom-level claims on Figure 22.

In  Chapter  5,  this  revised  S2 target  system design  and  supporting  reasoning  were 

arrived at thanks to the cache having been proven ineffective in use. Given that initial 

understanding of the domain and the behaviour of DAS components was inaccurate (the 

analyst  failed to  predict  that  images  would be accessed non-sequentially  and thus the 

cache prove ineffective), it is reasonable to assume that this new design and reasoning may 

too be flawed. Thus, there is some benefit to converting the adaptive image viewer to a m-

DAS,  which  should  prove  better  equipped  to  adapt  to  any  further  unforeseen 
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circumstances. By monitoring some of the assumptions in the claim refinement model, the 

adaptive image viewer should be able to adjust the design of the S2 target system if the 

assumptions upon which it is reliant are again proven false.

There are two claims on Figure 21 that are modelled with a “broken” label. Although 

such claims don't influence a target system design, a monitor could be devised to remove 

the broken label should the assumption be found to hold in the future. If this were to 

occur,  the  bottom level-claim “Extra  Speed Needed in  S2”  would  be  reinstated  in  the 

Strategic  Rationale  model  (not  shown),  and  potentially  cause  the  m-DAS  to  change 

behaviour. When applying confidence labels to these initially broken claims, the analyst is 

essentially expressing a degree of confidence that the claim will remain broken, rather 

than a degree of confidence that the claim will hold at some time in the future. Figure 42 

below shows  the  claim refinement  model  from  Figure  21 annotated  with  appropriate 

confidence labels.

As  Figure 42 depicts, only the “Latency is High in S2” claim has been categorised as 

unbreakable: although it would certainly be feasible to devise a monitor for the claim, the 

fact  that  the  defining  characteristic  of  the  D2 domain  is  high  latency  means  that 

monitoring it is unnecessary. There are four claims for which monitors may be devised, 
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and the certainty labels from these claims are propagated throughout the claim refinement 

model in accordance with the rules set out in Section 5.3. Thus, for the revised S2 target 

system,  there  are  three  bottom-level  claims  considered  qualified,  and  one  considered 

uncertain.

Combinations of uncertain bottom-level claims are the key focus of testing aimed at 

uncovering emergent behaviour in a m-DAS as a result of model modification. Ideally all 

combinations of bottom-level claims not characterised as unbreakable would have tests 

devised for them. However, in circumstances in which devising so many test cases proves 

infeasible,  focussing on the m-DAS's behaviour should one or more uncertain bottom-

level claims no longer hold, will yield some degree of assurance whilst minimising testing 

burden. In this example, the behaviour of the m-DAS should the “Must Try to Improve 

Speed” claim no longer hold emerges as the key testing focus for uncovering emergent 

behaviour.  Table 4 below uses the  T=2n-1 formula discussed previously to illustrate the 

number  of  testing  scenarios  required  to  test  m-DAS  behaviour  after  invalidating 

combinations of all claims in  Figure 42, qualified & uncertain claims, or just uncertain 

claims at the bottom level.

All Claims Qualified and Uncertain Uncertain

15 15 1

Table 4: Testing Scenarios Required to Cover the Categories of Claims

In this instance, because there are no unbreakable bottom-level claims, testing the m-

DAS's behaviour after invalidating combinations of qualified and uncertain claims is an 

identical task to testing all combinations of claims. If only uncertain bottom-level claims 

are considered, a single testing scenario is required; highlighting the m-DAS's behaviour 

when  this  particular  claim  is  invalidated  as  a  key  testing  concern.  Of  course,  any 

procedure reliant on a qualitative certainty classification is vulnerable to the problem of 

mis-classification;  a  claim classified  as  qualified  that  later  proves  false  may still  cause 

emergent  behaviour  after  evading  testing  coverage  if  only  uncertain  claims  were 
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considered. It is, therefore, advisable to cover all but the unbreakable claims with testing 

in m-DASs where a risk of emergent behaviour after model modification is unacceptable.

The testing approach advocated in this section offers no coverage of the behaviour of 

individual components, or of the system's business logic in any individual configuration. 

System components are treated in a black-box manner. However, in terms of potential 

modification and resultant changes to the m-DAS's adaptive behaviour, the approach is 

analogous to a testing approach that would offer path coverage of a given piece of code. 

White-box  analysis  of  Claim  Refinement  Models  allows  paths  of  “Broken”  label 

propagation to be identified and grouped,  with analysis  of  the SR models  allowing all 

potential  paths the of model transformer,  in light of the results  of  the “Broken” label 

propagation analysis, to be investigated. Of course, testing only combinations of qualified 

and uncertain claims, or solely combinations of uncertain claims reduces testing coverage 

accordingly, with this being analogous to testing the most likely execution paths when 

performing standard white-box software testing.

To conclude, this section has explored the issue of emergent behaviour in m-DASs. It 

has identified a difficulty in delivering assurance in the potentially modified behaviour a 

m-DAS  may  exhibit  after  model  modification  through  testing.  The  testing  workload 

required  to  offer  a  good  level  of  assurance  in  a  m-DAS's  behaviour  in  potentially 

unforeseen or only partially understood circumstances is so burdensome as to often prove 

infeasible. To combat this, the chapter has introduced a method by which limited testing 

resources can be directed to the most likely of scenarios potentially uncovering emergent 

behaviour, using ReAssuRE models to remove the need to perform complex analysis to 

establish the relative certainty of  complex claims by deriving the relative certainty of 

simpler, easier to categorise claims. The issue of testing complexity for m-DASs, and the 

test-case pruning method discussed in the chapter have been published in preparation for 

this thesis [4].
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6.5 Chapter Conclusion

Previous work in requirements monitoring has suggested that  systems may benefit 

from monitoring the degree to which they are able to satisfy certain key requirements. A 

DAS, however, has the potential to take action in circumstances where this monitoring 

data indicates under-performance or a failure to satisfy requirements. Also, the emerging 

models@run.time paradigm in which a system loads and reasons with models of its own 

behaviour indicates an interest in this style of system. This thesis uses the term model-

driven Dynamically Adaptive System (m-DAS) to identify a DAS that uses its design-time 

models to guide its run-time adaptation, and this class of system represents a step forward 

in both of the aforementioned research areas.

This chapter illustrates how a m-DAS could be constructed using ReAssuRE models to 

guide run-time adaptation, with monitoring of assumptions used as a means of modifying 

models to reflect unanticipated operating conditions. The chapter discusses the different 

components necessary to build such a system, and presents a reference implementation of 

the  key  model  transformer  component  capable  of  modifying  models  in  response  to 

monitoring data  (in  the form of  events)  in  accordance with a  monitoring policy.  The 

potential increase in autonomy offered by a m-DAS comes at a price of complexity, and 

thus a m-DAS offers  less  predictability than a DAS. The chapter  explores the issue of 

assurance in m-DASs, with the reduction in predictability remaining challenging.

The chapter also provides answers to two of this thesis' research questions, which are 

presented in Section 1.3:

How can a system be designed with a greater degree of autonomy than current

state-of-the-art DASs, and is the extra autonomy useful?

a m-DAS using ReAssuRE models to control adaptation and assumption monitoring to 

adjust the models as the environment change offers a greater degree of autonomy than a 

current state-of-the-art DAS, in that the m-DAS possesses a limited ability to adjust its 

behaviour to suit operating conditions outside those envisaged at design time. This ability 
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offers  the  possibility  of  designing  systems  to  operate  in  environments  with  a  greater 

degree of uncertainty than previously possible,  whilst still  maintaining the ability of a 

DAS to operate in volatile, changeable environments.

How can the testing workload be managed in systems with greater autonomy?

The answer to this question is less positive: the testing workload in a m-DAS using 

ReAssuRE models and assumption monitoring is high. It is necessary, as it is for standard 

DASs, to test individual target systems, and the mechanism that decides on and performs 

the transitions between them. Additionally,  it  is  necessary to verify that  the m-DAS's 

behaviour  should  an  assumption  no  longer  hold  is  correct,  or  at  the  very  least  not 

damaging. It is possible to afford some degree of assurance through testing by prioritising 

the most likely scenarios in which emergent behaviour may occur, and it is possible to 

remove  scenarios  that  have  no  possibility  of  provoking  emergent  behaviour  from the 

testing regime. However, in many such m-DASs a degree of assurance will have to be 

sacrificed  to  keep  testing  workloads  feasible.  For  m-DASs  in  which  this  sacrifice  is 

unacceptable, other methods of delivering assurance such as monitoring or human-in-the-

loop adaptation may be worthwhile, but are beyond the scope of this thesis.

The next chapter seeks to validate the work presented in this and the previous chapter 

by way of a more complete case study, which focusses on a more complex DAS than has 

been used to illustrate the approach. 
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This chapter validates the ReAssuRE modelling approach's usefulness for larger, more 

complex DASs than the adaptive image viewer used as an example throughout this thesis, 

by way of a retrospective case study, focussing on a previously deployed DAS. The novel 

model uses demonstrated throughout Chapters  5 and  6 are validated in this larger case 

study, demonstrating the benefits discussed in the respective chapters on a real-life DAS.

GridStix is a DAS deployed on the River Ribble in North West England that performs 

flood monitoring and prediction  [2]. It takes the form of an intelligent wireless sensor 

network  with  multiple  nodes  measuring  river  depth  and  flow rate  using  a  variety  of 

sensors,  including  the  analysis  of  images  taken  with  an on-board  digital  camera.  The 

GridStix system uses the GridKit middleware  [39], which provides the system's adaptive 

capabilities.

The flow rate and river depth data is used by a point prediction model, which predicts 

the likelihood of the river flooding using data from the local node and data cascaded from 

nodes  further  upstream.  The  more  upstream  data  available,  the  more  accurate  the 

prediction.

The  environment  in  which  GridStix  operates  is  volatile,  as  the  river  is  liable  to 

flooding. When the river floods, the nodes are in danger of submersion, and of sustaining 

significant damage from water-borne debris. As such, the GridStix system needs to be able 

to maximize its ability to withstand node failure in order to maintain the connectivity of 

the surviving nodes.

The GridStix nodes have processing capability, which allows processing of the data and 

execution  of  flood  prediction  models  on-site  with  the  GridStix  system  acting  as  a 

lightweight  grid.  However,  the  nodes  are  resource-constrained  and  some  tasks, 

particularly flow rate calculations which involve processing digital camera images, are best 

performed  by  distributing  computation  among  the  nodes  which  increases  prediction 

accuracy.
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Distributing computation has a cost in terms of the power consumed by inter-node 

communication, which is a serious issue since GridStix's location is remote, and power has 

to be provided by batteries and solar panels. The GridStix system can communicate using 

different spanning tree algorithms, trading off fault tolerance and power consumption. As 

such,  even from this  brief  overview it  is  possible to  infer  that GridStix  has three key 

conflicting softgoals: “Energy Efficiency”, “Fault Tolerance” and “Prediction Accuracy”.

When specifying the GridStix system, domain experts (hydrologists) partitioned the 

operating environment into three distinct domains: D1 (Normal), D2 (High Flow) and D3 

(Flood).  The  D1 (Normal)  domain  is  characterised  by  a  quiescent  river,  with  little 

imminent risk of flood or danger to local residents or the nodes themselves. The D2 (High 

Flow)  domain  features  a  fast-flowing  river,  that  may  suddenly  flood.  The  D3 (Flood) 

domain occurs when the depth increases and the river is about to flood, which means that 

the nodes are in imminent danger of failure. For each domain, a target system was devised, 

with target system S1 tailored for domain D1, S2 for D2 and S3 for D3 respectively.

The  GridStix  developers  whilst  prototyping  constructed  a  basic  simulator  [113], 

capable of emulating inter-node communication, visualising the currently active network 

topology of the GridStix nodes under simulation, and calculating both the power used by 

node  operation  and  the  power  generated  by  the  nodes'  solar  panels.  To  validate  the 

behaviour of GridStix system under configurations devised using ReAssuRE models (either 

automatically or manually) for scenarios discussed in this chapter, several features have 

been added. 

Firstly,  the  simulator  was  extended  to  support  the  loading  of  adaptation  policies 

directly, rather than a simulator scenario needing to be coded to set up the simulated 

GridStix nodes in a given configuration. 

Secondly, support has been added for scripting simulated weather conditions, which 

affects the behaviour of the river (and thus the behaviour of the GridStix nodes, as they 

observe the river) and the performance of the GridStix nodes' solar panels. 
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Finally, support has been added allowing node failures to be simulated: the GridStix 

system's operating environment is hostile, with nodes potentially failing due to debris in 

the flooding river, prolonged exposure to notably cold and wet conditions, or even due to 

interference from local wildlife.

Together,  these  changes  allow prototype  adaptation  policies  to  be  analysed  before 

being deployed on the actual system. The support for scripting weather conditions allows 

the performance of the GridStix nodes in various configurations to be assessed in both 

conditions previously experienced by the GridStix system and recorded, and conditions 

specially designed to test the configuration under study to the extreme. A need to better 

understand and optimise the behaviour of the GridStix system after losing one or more 

nodes to damage emerged after deployment, a task eased by the simulator's support for 

forcing node failure.

The  results  of  a  simulator  run  for  a  given  configuration  under  a  given  set  of 

environmental conditions are typically expressed quantitatively by way of the number of 

simulated hours elapsed before a sufficient number of GridStix nodes fail to render the 

network fragmented i.e. one or more nodes unable to send or receive data to or from the 

rest of the nodes. A fragmented network does not necessarily represent a complete system 

failure, the remaining body of nodes able to communicate will still work together to reach 

flood predictions, but the accuracy of the predictions will be compromised by the non-

availability of  data  from serviceable  nodes.  Other less  frequently used metrics  are  the 

number  of  GridStix  nodes  that  either fail  due either to  battery exhaustion or  become 

fragmented from the network over a set number of hours, or the number of hours elapsed 

before only a set number of GridStix nodes remain in communication with each other and 

able to arrive at a flood prediction.

In  addition  to  these  quantitative  results,  the  visualiser  enables  certain  other 

observations to be made during simulation runs, which are more qualitative in nature. 

Observing the simulated GridStix system transition between target systems repeatedly, a 

condition  known  as  thrashing,  would  indicate  a  problem with  the  trigger  conditions 

controlling adaptation, and ultimately a problem with the domain partitioning carried out 
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during  initial  analysis.  Observing that  in  a  given  scenario,  one specific  GridStix  node 

seems to  be using significantly  more power  than the others,  for  example  because  the 

chosen network topology routes a significant proportion of traffic through the node, may 

allude to  a  potential  node  failure  if  the  scenario  is  elongated,  or  if  more  challenging 

environmental conditions are encountered. These observations do not form part of the 

simulator results, but offer a useful means of feedback in both refining configurations and 

designing challenging weather condition scripts for simulation.

7.1 ReAssuRE models for the GridStix System

This section presents the complete set of ReAssuRE models for the GridStix system, 

discussing  each  in  turn.  At  the  highest  level  of  abstraction,  a  Level-One  Strategic 

Dependency model is created for the GridStix system as a whole, showing the actors, goals 

and dependencies involved in the system. This SD model is depicted in Figure 43.
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The Strategic  Dependency  model  for  the  GridStix  system depicted  in  Figure  43 is 

considerably more complex than that created for the adaptive image viewer (depicted in 

Figure 2 on page 50). The GridStix system's dependency on the GridKit middleware means 
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an additional actor on the model, and additional dependency relationships to reflect the 

dependencies  between  the  GridStix  system  and  its  adaptive  infrastructure.  Figure  43 

shows that the principal  stakeholder for  the GridStix system is  the UK's Environment 

Agency, who are responsible for managing and monitoring the river. The Environment 

Agency depend upon the GridStix system to predict flooding, and to do so as accurately 

and reliably as possible whilst using as little energy as possible. 

It could be argued that the need for “Energy Efficiency” and “Fault Tolerance” are both 

derived  from  a  higher-level  reliability  softgoal.  However,  the  GridStix  system's 

environmental  constraints  prevent  any  higher-level  softgoal  from  being  satisficed 

(sufficiently satisfied) via means other than the system having a degree of fault tolerance 

and managing power consumption to prevent battery exhaustion. Thus, the higher-level 

softgoal remains out of scope in Figure 43.

The only difference between the GridStix Level-One SD model depicted in Figure 43 

and a LoREM Level-One SD model of  the DAS is  the separation of  GridKit's  roles  in 

GridStix. As discussed in Section 4.3, The roles of an adaptation mechanism, a decision-

making  mechanism  and  an  adaptation  mechanism  are  separated  from  the  adaptive 

infrastructure role in the ReAssuRE modelling process to allow for DASs in which the 

three roles are played by separate concrete agents, and to provide more detail at Level 

Two.  The three  roles  are likewise separated  in  the SD model,  but in  systems such as 

GridStix in which the three roles  are played by a singe agent,  the extra detail  has  no 

specific additional benefit.

7.1.1 Level-One Strategic Rationale Models

As discussed in the chapter introduction, the GridStix system's operating environment 

was  partitioned  by  domain  experts  into  three  domains:  normal,  high  flow and  flood; 

referred to as D1, D2 and D3 respectively. The target systems S1, S2 and S3 correspond to 
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each  domain,  and  this  sub-section  presents  and  discusses  the  Level-One  Strategic 

Rationale models for each in turn.

Figure 44 depicts the Level-One strategic rationale model for the S1 target system.

Figure 44 shows that the GridStix system's main goal (upon which the stakeholders 

depend on the GridStix system fulfilling) is to “predict flooding”. The GridStix system opts 

to fulfil this goal using a point prediction algorithm, as indicated by the “provide point 

prediction” task. The task of providing a point prediction is complex, and is divided into: 

“measure [river] depth”, “calculate [river] flow rate” and “communicate data”. Measuring 

the depth and flow rate depends of course on the data being available from sensors, which 

remain out of scope on  Figure 44. The “communicate data” task may be completed by 

satisfying the “organise network” and “transmit data” goals. “Organise network” may be 

satisfied  either  by  organising  the GridStix  Nodes  using  a  fewest  hop or  shortest  path 
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topology, as controlled by the “use SP topology” and “use FH topology” tasks, respectively. 

The “transmit data” goal may be achieved by using either Bluetooth or Wi-Fi for radio 

transmission,  as  indicated  by  the  “use  Bluetooth”  and  “use  Wifi”  tasks  respectively. 

Finally, the “Calculate Flow Rate” Goal may be achieved either by analysing images taken 

with the on-board digital  camera on the local node,  or by distributing the calculation 

throughout the grid, as suggested by the “Single Node Image Processing” and “Multi Node 

Image Processing” tasks, respectively.

From an adaptation perspective, there are three variation points in Figure 44, where a 

goal  may  be  satisfied  by  two  or  more  tasks  to  be  decided  between.  These  goals  are 

“Transmit Data”, “Organise Network” and “Calculate Flow Rate”. For the “Transmit Data” 

goal, “Use Bluetooth” hurts the GridStix system's fault tolerance, because its inferior range 

means that fewer nodes are within transmission distance of one-another. However, using 

Bluetooth to transmit data uses significantly less power than Wi-Fi. For the “'Organise 

Network” goal, organising the GridStix nodes using a fewest hop topology increases the 

fault tolerance of the GridStix system as fewer nodes are depended upon to relay a single 

message,  but  does  so  at  a  cost  of  greater  power  consumption,  given  that  each  hop's 

transmission takes place over a greater distance. For the “Calculate Flow Rate” goal, using 

single-node image processing saves a significant amount of power by reducing the need for 

radio transmission, but the (significant) length of time taken to analyse the image and 

yield a flow rate value on a single node means that  point predictions can be run less 

frequently, which has the effect of worsening the accuracy of flood predictions.

The D1 domain is characterised by a quiescent river, with little risk of either the river 

flooding or the GridStix nodes becoming damaged. As such, the S1 target system seeks to 

conserve power wherever possible, maximising energy efficiency. If possible, the GridStix 

system's stakeholders would prefer to offer the most accurate predictions and the greatest 

degree of fault tolerance possible, but the need to conserve energy (and thus charge the 

battery where possible whilst in this configuration) dictates a more balanced approach.

The rationale behind each selection decision is recorded in the five claims on Figure

44. The decision to use Bluetooth over Wi-Fi for data transmission is supported by two 
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claims.  The “Faults Unlikely in S1”  claim essentially downplays the significance of the 

negative contribution using Bluetooth makes to fault tolerance. The “No Need to Waste 

Power on Wi-Fi” claim speaks to the fact that, given that the river is quiescent and the 

risk  of  node  failure  due  to  damage  is  diminished,  increasing  power  consumption  to 

increase  resilience  is  unjustifiable,  highlighting  the  negative  impact  of  “Use  Wifi”  on 

energy efficiency.

The decision to organise the GridStix nodes using a shortest path topology instead of 

fewest hop, like the previous decision, is supported by the “Faults Unlikely in S1” claim. 

The claim's “break” contribution argues that the negative impact of “Use SP Topology” on 

“Fault Tolerance” should be overlooked. The “No Need to Waste Power on FH” argues 

that the additional power required by a fewest hop topology to improve resilience is not 

justified,  much  like  the  “No  Need  to  Waste  Power  on  Wi-Fi”  claim  in  the  previous 

paragraph.

The final decision, governing the use of single node image processing over multi node, 

is supported by the “Multi-Node Image Processing uses Too Much Power” claim and the 

“Single Node Image Processing is Accurate Enough for S1” claim. The negative impact of 

“Single Node Image Processing” on the “prediction accuracy” softgoal is negated by the 

former claim, and the latter claim highlights the increased power consumption of “Multi 

Node Image Processing”.

Moving on to the D2 domain, the GridStix system is here faced with a river whose flow 

rate has increased, and is in danger of flooding relatively suddenly. In these circumstances, 

it is particularly important that the S2 target system is specified such that flood predictions 

are  as  accurate  and  timely  as  possible.  Furthermore,  should  the  river  begin  to  flood 

unexpectedly, there is a danger of node failure. Figure 45 depicts the Level-One strategic 

rationale model for the S2 target system.
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The S2 target system has the same goals and means to achieve them as the S1 target 

system,  along with the same variation points.  However,  the  decisions  reached on the 

specification of the S2 target systems are different, given the different circumstances in 

which it operates. The three claims in  Figure 45 give a brief indication of the rationale 

behind each decision.

The decision to use Wi-Fi rather than Bluetooth for communication in S2 is supported 

by the “Bluetooth is too risky for S2” claim, which alludes to the fact that using Bluetooth 

with its shorter range would risk network fragmentation should a relatively small number 

of nodes fail. The claim's “make” link highlights the negative impact selecting Bluetooth 

would have on the “Fault Tolerance” softgoal.

Likewise,  the decision to use multi-node image processing to determine the river's 

flow rate from images taken with nodes' on board digital cameras, rather than performing 
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the analysis  on a single node is supported by the “Single Node Image Processing Isn't 

Accurate Enough for S2” claim. The rationale here is that the additional time taken to 

analyse images on a single node means that predictions are made less frequently and with 

less data, reducing the accuracy. As with the previous claim, the “make” link highlights 

the  negative  impact  of  the  “Single  Node  Image  Processing”  task  on  the  “Prediction 

Accuracy” softgoal.

The  final  decision,  to  use  a  shortest  path  topology  to  organise  the  nodes  on  the 

network,  has been reached on power-saving grounds,  much as  it  was  in  the  S1 target 

system. This time, however, the rationale is simpler. For S1, a fewest hop topology was 

adjudged not to be necessary, as well as being expensive in terms of energy. For S2, the risk 

of sudden flood and potential node failure means that any measure improving resilience 

would be welcome, but the additional power consumption associated with a fewest hop 

topology simply could not be afforded. As such, for the S2 target system a simpler rationale 

is recorded with the single “FH uses too much power” claim, which uses a “make” link to 

highlight the negative impact “Use FH Topology” would have on the “Energy Efficiency” 

softgoal.

The third,  D3 domain,  is  characterised by a river that has begun to flood. In these 

circumstances the GridStix nodes are in significant danger of submersion which would 

(hopefully only) temporarily prevent them from communicating with the other nodes or 

collecting solar power. There is an additional danger of a node sustaining damage from 

debris  floating  downstream.  As  such,  the  S3 target  system's  specification  focusses  on 

resilience.  Figure  46 below depicts  the  Level-One strategic  rationale  model  for  the  S3 

target system.

Page 145



7.1.1  Level-One Strategic Rationale Models

The three claims in Figure 46 record the rationale behind the selection decision taken 

for  each  variation  point.  The  decision  to  use  Wi-Fi  for  communication  rather  than 

Bluetooth, and the decision to use multi-node image processing rather than single-node 

share the same outcome and short rationale with the S2 target system. The third decision, 

which dictated the use of a fewest hop network topology instead of shortest path, is where 

the S3 target system design differs to that of S2. For this decision, it was decided that the 

significant risk of nodes becoming temporarily or permanently unable to form part of the 

GridStix  network  meant  that  a  shortest  path  topology,  despite  its  lower  energy 

consumption, should be overlooked in favour of the more resilient fewest hop topology. 

The  “SP  is  too  risky  for  S3”  claim  uses  a  “make”  link  to  emphasise  the  negative 

contribution “Use SP Topology” makes to the “Fault Tolerance” softgoal.
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The Level-One SR models presented in this subsection are significantly more complex 

than  their  LoREM counterparts,  which  present  only  the  selected  alternative  for  each 

decision in a target system, and contain no claims. The extra complexity improves the 

traceability of the ReAssuRE models significantly, as detailed in Section 7.2.

7.1.2 Level-One Claim Refinement Models

The previous  sub-section  introduced  the  Level-One  Strategic  Rationale  models  for 

each of the target systems specified for GridStix. This sub-section focusses on the Level-

One Claim Refinement Models, which elaborate on the brief rationale recorded by the 

claims  on  the  Level-One  Strategic  Rationale  models  presented  and  discussed  in  the 

previous sub-section. The claim refinement models for the S1, S2 and S3 target systems are 

discussed, in turn, below.

Figure 47 depicts the Level-One Claim Refinement Model for the S1 target system.

The five claims on the Level-One Strategic Rationale model depicted in Figure 44 on 

page 141 are repeated in Figure 47 as bottom-level claims. These are supported, in various 

combinations, by four claims made about the environment, and three about the behaviour 

of  various  components  available  for  selection.  The  four  environmental  claims:  “Only 
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Source of Fault is the River”, “River is Unlikely to Flood in S1”, “System will Usually be in 

S1” and “Energy Efficiency is Most Important in S1” are relatively self-explanatory. The 

“Only Source of Fault is the River” claim was added when revisiting the model, because 

the “River Unlikely to Flood in S1” had previously been the sole support for the “Faults 

Unlikely in S1” claim. The fact that the river is unlikely to flood is visibly insufficient to 

make the derived assertion: which indicated an implicit assumption. Thus, the previously 

un-acknowledged “Only Source of Fault is  the River” assumption is made explicit  and 

modelled.

The three  claims about  the  behaviour  of  available  components:  “Wi-Fi  Uses  More 

Power  than Bluetooth”,  “FH Topology uses  More Power  [Than SP]”  and “Multi-Node 

Image Processing uses More Power [Than Single-Node]” are explicit statements of facts 

underpinning the rationale in the bottom-level claims. Should one of these claims later be 

discovered to be incorrect, the decisions made using this faulty understanding can be re-

visited.

Figure 48 depicts the Level-One Claim Refinement Model for the S2 target system.

As  with  the  S1 target  system,  the  three  claims  from the  strategic  rationale  model 

depicted in  Figure 45 on page 144 appear in  Figure 48 as bottom-level claims. The first: 

“Single  Node  Image  Processing  isn't  accurate  enough  for  S2”,  is  supported  by  two 

underlying claims: “There's a small risk of flood in S2” and “Single Node Image Processing 

isn't very accurate”. Together, these two supporting claims elaborate on the rationale in 
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the bottom level claim: that, given the risk of flooding whilst the GridStix system is in the 

S2 configuration, the lesser degree of accuracy consequent to performing image flow rate 

analysis on a single node is unacceptable. 

The  remaining  two  bottom-level  claims  are  particularly  interesting,  because  the 

softgoal contributions of the candidate tasks on the associated Strategic Rationale model 

are  identical  yet  the  decisions  reached  in  each  case  are  conflicting.  These  conflicting 

decision outcomes are one of the motivators for the use of claims over some quantitative 

contribution link or softgoal weighting scheme to record decision rationale. In the case of 

the  decision  governing  data  transmission  method,  the  more  power  hungry  and  more 

resilient Wi-Fi is  used,  whereas for the decision governing network topology,  the less 

resilient and more energy efficient shortest path topology is used.  For the former, the 

rationale captured by the claims is that the risk of flooding in D2 implies a risk of node 

failure, and that Wi-fi transmission improves resilience considerably. For the latter, the 

rationale is that the slight improvement in resilience offered is overridden by a dramatic 

increase in power consumption (given that radio transmissions take place over increased 

distances using considerably more power).

Figure 49 depicts the Level-One Claim Refinement Model for the S3 target system.

Page 149

Figure 49: Claim Refinement Model for GridStix S3 Target System



7.1.2  Level-One Claim Refinement Models

As  with  the  previous  two  target  systems,  the  three  bottom  level  claims  on  the 

associated strategic rationale model (Figure 46 on page 146) appear in Figure 49 as bottom-

level claims. Unlike the S2 target system, however, the decisions reached for the S3 target 

system are consistent with one-another. In S3, the imminent risk of flood and node failure 

means that the system adopts its most accurate and most resilient configuration at the 

expense of energy efficiency. The rationale for all three decisions is that given the risk of 

flood and therefore fault, the more resilient or accurate alternative should be preferred.

Although the  additional  tracing information  recorded  on ReAssuRE Level-One SR 

models allows far more rationale inferred than their LoREM counterparts, or any standard 

i* model, the rationale it is possible to convey in a short claim label is often imprecise or 

simplistic. The ability to record a more detailed rationale using Claim Refinement Models 

serves  not  only  for  later  reference,  but  allows  the  basis  of  a  decision  rationale  to  be 

examined more thoroughly.

The  case  study  has  demonstrated  that  merely  the  act  of  constructing  a  Claim 

Refinement  Model  can  lead  to  previously  implicit  assumptions  being  identified.  An 

unidentified  assumption  underpinning  potentially  several  decisions  could,  potentially, 

require significant changes to a DAS's requirements specification should it later be found 

false. Uncovering the assumption earlier in the requirements engineering process allows 

the  assumption's  safety  to  be  assessed  whilst  the  consequences  of  adjusting  design 

decisions based upon it are less severe. In the case of the uncovered assumption in the 

GridStix system, this meant that the possibility of external interference to the system by 

local wildlife was considered. As a result, extra attention was paid to decisions affecting 

GridStix's fault tolerance, and that simulation was undertaken to establish the potential 

impact of node failure caused by forces other than the river.
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7.1.3 Level Two Models

The  previous  two  sub-sections  presented  the  different  types  of  Level-One  model 

created  for  individual  target  systems during the ReAssuRE process.  Level-Two models 

focus  on  the  transitions  between  target  systems,  defining  the  condition(s)  triggering 

adaptation and pairs of target systems which can be validly transitioned between. For the 

GridStix system, all three target systems may transition to any of the others validly, which 

would  require  six  Level-Two  models.  However,  given  the  high  degree  of  similarity 

between the models only a single Level-Two model will be presented and discussed in this 

sub-section. Figure 50 shows the Level-Two model covering the transition between the S1 

and S2 target systems.

As  in  the  Image  Viewer  Level  Two  model  discussed  in  Section  4.3,  Figure  50 is 

separated  into  three  distinct  roles:  the  monitoring  mechanism,  decision  making 

mechanism and the adaptation mechanism. In the GridStix system, the GridKit adaptive 
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middleware [39] plays each of the roles, but this will not necessarily be the case for other 

DASs. The monitoring mechanism monitors the flow rate and depth of the river, collating 

and  supplying  the  data  to  the  decision  making  mechanism.  The  decision  making 

mechanism determines  the  current  state  of  the  environment,  identifying  a  change  of 

domain  from  D1 to  D2.  When  this  occurs,  the  decision  making  mechanism  triggers 

adaptation,  in  this  case  by  setting  the  “HIGH_FLOW” flag,  which  is  effected  by  the 

adaptation mechanism which transitions the GridStix system from S1 to S2.

As discussed in Section 7.1, the additional complexity in ReAssuRE models stemming 

from  the  separation  of  LoREM's  “Adaptive  Infrastructure”  role  into  the  three  roles 

depicted in  Figure 50 is  of  limited illustrative benefit  in systems,  such as  GridStix,  in 

which  all  three  roles  are  played  by  a  single  agent.  In  systems  utilising  an  adaptive 

infrastructure  that  plays  all  three  roles,  the  benefit  of  the  additional  complexity 

consequent  to  all  three  roles'  inclusion  lies  merely  in  the  ability  to  perform  policy 

derivation, as discussed in Section 7.3.

7.2 Tracing Examples

The change classification presented in Section 5.1.1 discussed different types of change 

a DAS specification may be subject to. One of the benefits of ReAssuRE models is their 

enhanced  tracing  support,  easing  the  process  of  model  evolution.  This  section 

demonstrates how ReAssuRE models'  enhanced tracing support was used to refine the 

GridStix system design in two scenarios. The first covers a broken assumption stemming 

from faulty  domain  understanding,  and the  second  a  set  of  environmental  conditions 

unforeseen at design time.

Assumptions are made extensively when scoping and specifying any system, and the 

complexity of environments for which DASs prove most useful  means that sometimes 

fundamental assumptions made during early-phase RE can later be found to be (or proved 

to  be)  false.  ReAssuRE  models  make  explicit  the  assumptions  on  which  component 
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selection decisions are based, allowing the impact of a faulty assumption to be assessed and 

for decisions reliant on broken assumptions to be traced and re-made in light of updated 

information  and new understanding.  For  the  GridStix  system,  it  was  discovered  after 

deployment  that  the  GridStix  system  typically  issued  flood  alerts  whilst  in  the  S2 

configuration, and that by the time the GridStix system needed to adapt to S3 because the 

nodes were in danger, timely and accurate flood predictions were less important than first 

expected.

The  importance  of  timely  and accurate  flood  predictions  in  S3 was  an assumption 

captured explicitly in the Level-One Claim Refinement Model for S3,  Figure 49 on page 

149. This means that the impact of the claim no longer holding could be assessed using 

ReAssuRE models, thanks to their support for this type of forward tracing.

The claim in  Figure 49 under scrutiny is “Prediction Accuracy is Crucial in S3”. The 

improved understanding that  has emerged through monitoring the GridStix  system in 

operation clearly shows that this claim doesn't hold. Thus, a “broken” label may be applied 

to the claim, and propagated throughout the model as demonstrated in Section  5.3. The 

resulting Claim Refinement Model is depicted in Figure 51.

After propagation,  one-bottom level  claim has been broken, which means that  the 

decision(s) reliant on it in the Strategic Rationale model need to be revisited. The Strategic 
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Rationale model showing the now broken “Single Node Image Processing isn't Accurate 

Enough for S3” bottom-level claim is depicted in Figure 52.

In Figure 52, the broken bottom-level claim supports the selection of multi node image 

processing.  This  decision  now  needs  to  be  revisited.  Given  that  predictions  are  now 

considered less important than survival in the S3 target system, switching to single node 

image processing and improving the target system's  energy efficiency seems wise.  The 

updated  Level-One  Strategic  Rationale  and  Claim  Refinement  Models  featuring  this 

changed decision outcome and new rationale are depicted in Figure 53 and Figure 54.
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As discussed in Section 5.1.1, an environmental change to a DAS's specification could 

take the place of a new environmental constraint, an adjustment to domain boundaries, or 
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Figure 54: Modified Claim Refinement Model for GridStix S3: New Rationale
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an entire domain being added, removed, or merged with another. This could be driven by 

improvements in understanding of the environment throughout the DAS's life cycle, or by 

the environment itself changing over time. For the GridStix system, an unforeseen set of 

environmental conditions was discovered after deployment, occurring when the river is 

occluded  downstream from the  GridStix  system.  When the river  is  either  completely 

blocked  or  the  water's  flow restricted,  either  due  to  a  man-made  obstacle  or  debris, 

conditions upstream deteriorate,  with the river depth rising. The GridStix system mis-

identified this depth increase as a developing flood, leading to a false alarm. However, a 

blockage downstream from the GridStix nodes reduces the measured flow rate, which the 

DAS can use to distinguish the D4 (blockage) domain from D3 (flood).

Although a river blockage does not necessarily pose a danger to local residents, and 

should not trigger a flood alert, there is a significant risk of the GridStix nodes becoming 

submerged or damaged as the river's depth increases, causing them to fail. Furthermore, 

should the blockage be removed (or breached) suddenly, the river's behaviour could be 

very difficult to predict without data sourced downstream of the blockage. Therefore, it 

would  be  desirable  to  report  the  condition  to  the  Environment  Agency,  the  system 

stakeholder who already receive flood warnings. Out of system scope, the Environment 

Agency would seek to remove occluding objects and restore the river's natural flow. It 

could  be argued that  the  emergence of  the  blockage domain,  and the requirement  to 

report its encounter are two separate changes; one environmental and one stakeholder 

requirements  change.  However,  requiring  the  DAS  to  report  that  it  has  adopted  a 

particular target system configuration does not add an additional goal to the Level-One 

models of an individual target system, it adds an additional goal to the Level Two model of 

the transitions to the new target system.

As discussed in Section 5.1.2, the introduction of a new domain requires a new Level-

One Strategic Rationale and Claim Refinement Model to be created. Where the target 

system's goals and available components are the same as another's, the existing Strategic 

Rationale model may be copied, minus the claims and with the appropriate change to the 

actor's  name  to  make  the  model  for  the  new  target  system.  From there,  component 
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selection  decisions  are  taken  for  the  new  target  system,  the  outcome  of  which  are 

recorded on the Strategic Rationale model with claims. The tracing need supported by this 

process  is  the ability to identify the component selection decisions that  are taken per 

target system, and ReAssuRE Level-One models' recording of both rejected and selected 

decision  alternatives  means  that  these  decisions  are  easily  identified  thanks  to  the 

presence of several tasks to potentially satisfy a goal via a means-end link on the model. 

The completed Level-One Strategic Rationale model for the S4 target system is depicted in 

Figure 55 below.

As Figure 55 shows, the S4 target system has been specified as using Wi-Fi for inter-

node communication, with the nodes themselves organised using a fewest hop topology. 

Single node image processing has been specified to derive flow rate measurements from 

the on-board  digital  camera.  These three  specification decision are each justified by a 

claim. The decisions governing the use of Wi-Fi and fewest hop topology essentially share 
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the  same as  their  equivalents  in  the  S3 target  system.  The final  decision,  however,  is 

underpinned by a “Single Node Image Processing is Accurate Enough for S4” claim, which 

eludes to the full rationale which is that, given that local residents are not in danger from 

a  flood,  less  accurate  predictions  can  be  used  to  save  power.  The  Level-One  Claim 

Refinement Model for the S4 domain is depicted in Figure 56.

Given the rationale behind the decision to use Wi-Fi over Bluetooth, and that to use a 

fewest hop rather than a shortest path network topology is essentially the same as for the 

S3 target system, it is no surprise that the right half of  Figure 56 is likewise similar to 

Figure 49: the claim refinement model for S3. The left hand side of the model, uses a claim 

to assert that although the localised flooding encountered in S4 presents a danger to the 

GridStix  nodes,  no  such  danger  is  presented  to  local  residents,  and  thus  prediction 

accuracy is less important. This, combined with the fact that the GridStix system can save 

power by using single-node image processing means that the S4 target system is specified 

using  this,  rather  than  the  more  accurate  but  less  energy  efficient  multi-node  image 

processing.

The  Level-Two  models  associated  with  the  S4 target  system  are  somewhat  more 

interesting  than  those  encountered  previously:  the  S4 target  system can  only  ever  be 

transitioned to from the S1 target system, but may be transitioned from to either the S1 or 
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S2 target system, depending on how quickly the blockage is cleared and the level of recent 

rainfall. The GridStix system may not transition from S2 to S4 because the rise in depth 

would be interpreted as a flood meaning that the S3 target system was adopted, and the 

GridStix system may not transition from S3 to S4 given that the river has already burst its 

banks, and any blockage between the banks will simply worsen the flood. Thus, when 

introducing the S4 target system, Level-Two models need to be created for the S1-S4, S4-S1 

and  S4-S2 transitions.  As  mentioned  at  the  start  of  the  blockage  tracing  example,  the 

stakeholder requirements change to report the detection of a blockage (or rather, that the 

DAS has adopted the S4 target system configuration) affects the Level-Two models of the 

transitions to the S4 target system, with model covering the S1 to S4 transition depicted in 

Figure 57. 

The decision as to which of the three adaptive infrastructure roles depicted in Figure

57 would  be  assigned  responsibility  for  reporting  the  blockage  was  marginal.  The 

monitoring mechanism could have been re-designed to report a low flow rate coupled 
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with a high depth. Likewise, the adaptation mechanism could have been re-designed to 

alert stakeholders when adapting from S1 to S4. However, it was decided that, given the 

decision making mechanism is already required to identify the blockage condition to fire 

an event triggering adaptation, it should bear responsibility for reporting blockages.

The  need  to  evolve  Level-Two  models  in  response  to  a  stakeholder  requirements 

change is a good example of the variable scope of such changes. Some user requirements 

changes will add a new goal to one or more Level-One Strategic Rationale models. Some 

may remove a decision alternative from one or more models. More extreme examples may 

necessitate a complete re-design of the system. It is impossible to fully anticipate and cater 

for the tracing needs of such varied changes, and this thesis makes no claims of ReAssuRE 

models'  improved traceability easing stakeholder requirements changes in general.  The 

requirement  to  report  blockages,  however,  is  a  relatively  minor  addition  which  the 

ReAssuRE models'  separation of  modelling by level  (as  specified  in  [10]) allows to  be 

handled efficiently.

To conclude, this section demonstrates the usefulness of ReAssuRE models' improved 

traceability in a real DAS that is larger and more complex than the adaptive image viewer 

used  to  illustrate  the  modelling  method.  The  likelihood  of  DAS  specifications  being 

subject to change elevates requirements traceability from the sort of issue important only 

to large-scale, complex systems to a key requirement of a DAS RE process, model-driven 

or  otherwise.  The  section  demonstrates  two  different  types  of  tracing  activity, 

demonstrating  that  the  general  improved  traceability  of  ReAssuRE  models  supports 

different types of tracing activity, and thus eases the implementation of different classes of 

specification change.

Without  the  additional  tracing  information  present  in  ReAssuRE  models,  the 

modelling effort  involved in performing the illustrated changes would be significantly 

greater.  The  increased  modelling  effort  would  be  further  exaggerated  in  cases  where 

knowledge of decision alternatives considered or of the rationale underpinning decisions 

has been lost, perhaps by personnel leaving the project. 
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7.3 Policy Derivation

Section 5.2 presented a tool which derived adaptive behaviour from ReAssuRE models, 

outputting to  the Genie  DSL  [107], which allows adaptive  behaviour to  be  examined, 

reasoned with, and exported to policies for adaptive middleware platforms. The Level-One 

Strategic Rationale models for the S1 (Figure 44), S2 (Figure 45), and S3 (Figure 46) target 

systems, along with the complete set of Level-Two models (for example, Figure 50) were 

used  to  derive  Genie  DSL representation of  the  GridStix  system's  adaptive  behaviour. 

Figure 58 shows the tool whilst generating the Genie model.

The resultant Genie model is depicted in Figure 59.
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The Genie model in Figure 59, visualised in the MetaEdit+ modelling tool [108], shows 

a brief overview of the variation points in the GridStix system, the configuration adopted 

in each target system and the triggers causing the DAS to switch between target systems.

The GridStix system uses the GridKit middleware  [39], upon which it relies for its 

adaptive capabilities. The automated policy generation tool introduced in chapter 5.2 can 

derive  GridKit  policies  from  a  collection  of  ReAssuRE  Level-One  strategic  rationale 

models, and Level Two models, and can be used to do so here. By verifying the generated 

policies against those created by hand for the GridStix system, it is possible to confirm that 

the policy generation method automated by the tool yields policies are correct.
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The policy generation tool was run using the ReAssuRE models presented in Section 

7.1,  as  used  for  the  Genie  conversion  tool.  Figure  60 shows  the  tool  generating  the 

policies, and Figure 61 shows a small excerpt from the generated adaptation policy. The 

full XML policy is included as Appendix B – GridStix Adaptation Policy.
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Figure 60: Tool Generating Adaptation Policies from ReAssuRE Models

<ReconfigurationRule>
 <FrameWork>SpanningTree</FrameWork>
 <Events><Event>
   <Type>FLOODPREDICTED</Type>
   <Value>TRUE</Value>
 </Event></Events>
 <Reconfiguration>
  <FileType>Java</FileType>
  <Name>Reconfigurations.FewestHop</Name>
 </Reconfiguration>
</ReconfigurationRule>

Figure 61: Snippet of Generated XML Adaptation Policy
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This snippet of  the  adaptation policy  contains  a  single  reconfiguration rule,  which 

specifies  that  when  transitioning  to  the  S3 target  system  that  a  fewest  hop  network 

topology should be adopted. The first piece of information in the reconfiguration rule is 

the  configuration  framework  to  which  the  reconfiguration  applies.  For  the  GridStix 

system, all reconfigurations use the “SpanningTree” framework. The Event triggering the 

reconfiguration is  the setting of the “FLOODPREDICTED” flag to “TRUE”,  which the 

GridKit middleware implements as an event.  The actual code executed to perform the 

reconfiguration resides in the “FewestHop” class in the “Reconfigurations” package, the 

execution of which is dictated by the policy above.

Upon Inspection of the (full) generated adaptation policy, it is possible to check that 

the reconfigurations specified will yield the target system configurations in the ReAssuRE 

Level-One  Strategic  Rationale  models.  Furthermore,  it  is  also  possible  to  check  the 

generated adaptation policy against that created by hand for the GridStix system. Both 

checks indicate that the generated policy is correct. The behaviour of the GridStix system 

under set environmental conditions, using different adaptation policies can be assessed 

using simulation. The next section discusses the simulator in more detail.

7.4 Policy Simulation

The  GridStix  system  is  deployed  in  a  remote,  hostile,  environment  which  makes 

performing maintenance difficult.  Although the GridStix system can report monitoring 

data,  there  is  little  possibility of  performing tuning based upon it  with any degree of 

frequency or regularity. Alterations to the GridStix system's adaptive behaviour may have 

far-reaching  consequences  in  terms  of  the  system's  ability  to  survive  its  hostile 

environment,  or its  success  in performing its  key goal:  predicting flooding.  Thus,  it  is 

beneficial  to  simulate  candidate  adaptation  policies  before  deployment,  allowing 

developers  to  assess  the  performance  of  the  GridStix  system  under  different 

configurations,  the  long-term  consequences  of  a  change  of  policies,  to  uncover  any 

emergent  behaviour  and  to  allow  challenging  environmental  conditions  previously 
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encountered to  be  studied  to  better  understand  how the  GridStix  system should  self-

optimise if they are encountered again.

When creating the GridStix system, developers created a basic simulator capable of 

calculating the energy consumed by nodes when communicating different data payloads 

using different  network topologies,  or  by using different radio transmission hardware. 

This  simulator  was  not  in  itself  sufficient  to  assess  the  impact  of  different  adaptation 

policies,  the need for  which was identified when performing maintenance.  This  thesis 

presents an extended version of the simulator, which is able to load adaptation policies 

and simulate the behaviour of the GridStix system using the policies when exposed to 

various  environmental  conditions.  The  behaviour  of  the  environment  may  also  be 

scripted, which allows previously encountered environmental conditions to be used to test 

candidate adaptation policies. The following paragraphs discuss the simulator's capabilities 

individually, in greater detail.

For the thesis's purposes, the most important simulator feature is policy simulation. 

This allows adaptation policies to be loaded and interpreted, and configures the simulated 

nodes as the policy specifies. Internally, the simulator raises adaptation triggers in much 

the same way as the actual system, with events raised when the simulated nodes detect 

either a high flow rate or an imminent local flood. Note, that the flood trigger refers to the 

site at which the GridStix nodes are situated, not the potential flooding downstream that 

the GridStix system seeks to predict. Thus, adaptation policies may dictate target system 

configurations for the three identified domains, but not alter the domain partitioning. To 

simulate  the  GridStix  system's  behaviour  if  the  domain  partitioning  is  adjusted,  the 

simulator will need to be modified to raise the correct adaptation triggers for the new 

partitions.

Another key feature of the simulator is the ability to simulate the nodes' energy usage 

when communicating with each other, and performing flow rate analysis. This feature was 

present in the original version of the simulator, but is the feature that allows the impact of 

configuration changes to be analysed. The energy-usage simulation has been extended to 

force nodes that exhaust their battery power to fail, which of course affects the operation 

Page 165



7.4  Policy Simulation

of the GridStix system and the performance of the other nodes, thanks to the inherent 

change in network topology. Figure 62 shows the simulator's visualisation of the GridStix 

nodes, their remaining power, and the currently active network topology.

From  an  environmental  perspective,  a  key  but  often  overlooked  feature  is  the 

simulation of differing light levels. Naturally, the performance of the GridStix nodes' solar 

panels is dependent on the amount of sunlight that falls upon them. At night, virtually no 

power is supplied by the solar panels, during the daytime the amount of energy generated 

is dependent on the amount of cloud cover. The simulator uses three broad light levels to 

allow  night-time,  cloudy  and  sunny  conditions  to  affect  the  amount  of  energy 

replenishing  the  nodes'  batteries.  These  light  levels  form  part  of  the  scripted 

environmental conditions that different target system configurations can be subjected to.
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Underpinning  the  simulator's  ability  to  simulate  the  GridStix  system's  adaptive 

capability is its ability to specify the behaviour of the river. The depth and flow rate of the 

river can be controlled as part of the environmental script, the simulated nodes monitor 

them, which in turn prompts the DAS to switch between target systems.

One final feature of the simulator, which is particularly useful for constructing and 

simulating  what-if?  scenarios,  is  the  ability  to  force  nodes  to  fail  due  to  external  (or 

unknown) causes. The deployed GridStix nodes operate in an environment that is not only 

volatile in terms of its behaviour, but also dangerous to the nodes' hardware. Nodes can 

fail due to water-borne debris when the river floods, due to the temperature extremes to 

which  they  are  subjected,  or  even  due  to  bovine  intervention.  Thus,  the  ability  to 

investigate the behaviour of the GridStix system after losing one or more nodes, and to 

assess  whether  different  target  system designs  are  better  able  to  tolerate  node loss,  is 

essential.

To conclude, this section presents an enhanced GridStix simulator that allows different 

adaptation policies to be trialled under scripted environmental conditions. The simulator 

is useful in assessing the impact of changes to the GridStix system's adaptive behaviour, 

and in refining target system designs in light of the challenging environmental conditions 

the  actual  system has  encountered.  The  simulator  serves  also  to  allow the  adaptation 

policies derived as part of the requirements validation process described in the following 

section to themselves be validated, and likewise for modified target system designs that a 

m-DAS may construct under certain scenarios (discussed in Section 7.6).

7.5 Requirements Validation

As discussed in Section  5.3, the ReAssuRE models' explicit capturing of assumptions 

using claims supports requirements validation activity, by exploring what-if? scenarios, in 

which the behaviour of the DAS is explored when assumptions upon which individual 

target  system  designs  are  based  are  broken.  This  type  of  validation  activity  has  two 
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benefits: firstly, an assumption in which a low degree of confidence is held is essentially a 

marker for uncertainty or incomplete understanding of the environment or the expected 

DAS behaviour.  Thus,  identifying  less  certain  claims  eases  the  identification  of  these 

patchy areas. Secondly, the behaviour of the DAS in adverse conditions can be explored, 

which  allows  any  deficiencies  to  be  mitigated  by  improving  the  robustness  of  the 

requirements specification. Section 5.3 noted that this thesis does not prescribe the nature 

of validation scenarios constructed, highlighting test cases, simulation and static reasoning 

as likely candidates to support this validation activity. The GridStix simulator introduced 

in the previous section serves as a useful tool in exploring the GridStix system's behaviour 

in customisable conditions. This section constructs identified validation scenarios for the 

GridStix system as simulator runs.

This  section  will  identify  and  present  the  validation  scenarios  constructed  for 

GridStix's S3 target system, and will work through the validation scenario pruning method 

discussed briefly in Section 5.3, demonstrating the reduction in validation workload that 

can be achieved by targeting only the most likely of scenarios.

Referring back to the Level-One Strategic Rationale model for the S3 target system 

(Figure  46 on  page  146),  the  S3 target  system  is  specified  as  using  Wi-Fi  for  radio 

communications,  a  fewest-hop  network  topology  and  multi-node  image  processing  to 

calculate  the  river's  flow  rate.  The  rationale  behind  the  decisions  is  recorded  in  the 

associated Claim Refinement Model, which was depicted in Figure 49 on page 149.

Although  it  would  perhaps  be  most  beneficial  to  construct  validation  scenarios 

covering every combination of supporting claims holding and being invalidated, this thesis 

advocates constructing validation scenarios only for combinations of bottom-level claims. 

This is  a  pragmatic decision to keep validation workloads manageable.  A bottom-level 

claim is usually a composite claim, derived from several underlying claims, and when a 

bottom-level claim is invalidated it is usually as a result of one or more supporting claims 

having previously  been invalidated  also.  The effects  of  broken assumptions  thus  form 

clusters, with all the potential combinations of invalidated supporting claims that result in 

a  bottom-level  claim  (or  combination  of  bottom-level  claims)  becoming  invalidated 
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having substantially similar effects on the DAS. As such, the focus of the validation work 

is the three bottom-level claims in Figure 49. 

Section  5.3 stated  that  the  number  of  required  validation  scenarios  (T)  could  be 

calculated from the number of bottom-level claims (n) using the formula:  T=2n-1, with 

one  being subtracted  to  exclude  the scenario  in  which all  claims  hold:  the  originally 

envisaged  domain.  Thus,  for  the  S3 target  system,  there  are  seven  possible  validation 

scenarios, as listed in Table 5 below.

Scenario “Single-Node Not 

Accurate Enough for 

S3” Claim

“SP too Risky for S3” 

Claim

“Bluetooth too Risky 

for S3” Claim

1 Holds Holds Invalidated

2 Holds Invalidated Holds

3 Invalidated Holds Holds

4 Holds Invalidated Invalidated

5 Invalidated Holds Invalidated

6 Invalidated Invalidated Holds

7 Invalidated Invalidated Invalidated

Table 5: Claim Combinations for GridStix S3 Validation Scenarios

Although seven validation scenarios do not represent an insurmountable validation 

burden, there are also those scenarios for the other target systems to consider.  Table 6 

below shows the number of validation scenarios required for each of the GridStix target 

systems, and in total.
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Target 

System

Required Validation 

Scenarios

S1 31

S2 7

S3 7

Total 45

Table 6: GridStix Validation Scenarios by Target System

In Table 6, the number of validation scenarios needed for the S1 target system stands 

out as being significantly greater than those for other target systems. This large number of 

validation  scenarios  is  because  of  the  style  of  claim  notation  used  in  the  Level-One 

strategic rationale model for S1, which used several bottom-level claims to convey a more 

complex  rationale.  S2 and  S3 use  a  single  inclusive  claim  to  support  each  individual 

decision, which reduces the number of validation scenarios significantly. Thus, there is a 

tension between the desire to maximise the precision of the recorded rationale (which 

often requires more claims) and the desire to minimise the number of validation scenarios.

Clearly,  forty  five  validation  scenarios  for  what  is  a  relatively  simple  DAS  is 

undesirable,  and  more  complex  DASs  could  require  significantly  more.  Thus,  the 
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validation scenario pruning method discussed briefly in Section  5.3 shall  be used.  The 

validation scenario pruning method requires claims on the claim refinement model to be 

classified according to the level of confidence held in each.  Figure 63 shows the claim 

refinement model for  the S3 target  system (as  in  Figure 49)  annotated with the claim 

confidence labels assigned.

In  Figure 63 there are no unbreakable  bottom-level  claims,  one qualified  and two 

uncertain. The most important classification decisions occur on the middle level of Figure

63, with “Single-Node [Image Processing] Reduces Accuracy” being classed as qualified, 

and the “SP is less Resilient than FH” and “Bluetooth is less Resilient than Wi-Fi” claims 

being classed as uncertain. 

Single-node  image  processing  reduces  prediction  accuracy due  to  the  greater  time 

needed between measurements to allow the processing to be completed on a single node 

reduces both timeliness and the amount of data available to the prediction algorithm, and 

as  such the “Single-Node Reduces  Accuracy” claim was  considered qualified.  The two 

uncertain claims were classified as such because the analyst was unsure as to whether the 

theoretically more resilient option in each case would prove so demonstrably in the field.

With no unbreakable claims, one qualified and two uncertain, removing unbreakable 

bottom-level  claims  from  consideration  will  yield  be  no  reduction  in  the  required 

validation  scenarios.  If  qualified  claims  are  also  removed  from  consideration,  three 

validation scenarios shall be needed. Table 7 below shows the results of the same working 

on each of  the  GridStix  target  systems,  and in  total.  The annotated  claim refinement 

models for S1 and S2 are included as Appendix C – Annotated GridStix Claim Refinement

Models.
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Target 

System

All Claims Excluding 

Unbreakable Claims

Excluding Qualified & 

Unbreakable Claims

S1 31 7 3

S2 7 3 3

S3 7 7 3

Total 45 17 9

Table 7: GridStix Validation Scenario Reduction using Claim Classification

Table 7 shows that for the GridStix system as a whole, removing unbreakable claims 

from  consideration  when  generating  validation  scenarios  will  reduce  the  number  of 

scenarios  needed  from 45 to  17.  If  qualified  claims  are  also  excluded,  the  number  of 

required scenarios will  drop further to 9.  Returning to the S3 target system, the three 

remaining validation scenarios centre around the claims that Bluetooth communication 

and  a  shortest-path  network  topology  present  too  much  of  a  risk  in  terms  of  fault 

tolerance to  be  used  in  the  S3 target  system,  with  the three  key  uncertain  validation 

scenarios  covering one,  other  or  both of  these  claims no longer  holding.  This  section 

discusses the two scenarios stemming from a single claim no longer holding in turn.

As discussed at the start of the section, this thesis uses simulation as the means to 

construct validation scenarios. To simulate the expected environmental conditions for the 

S3 target system, a combination of meteorological and logged data from the actual system 

in operation was used to construct a simulator environment script of a fairly typical flood 

event from start to finish.

The simulated conditions start from a period of relatively good whether, which means 

that the GridStix nodes start the simulation with close to full batteries. Then, a period of 

heavy rainfall occurs, lasting approximately 72 hours. During this time, the poor lighting 

conditions mean that the GridStix nodes' solar panels perform poorly. During this time, 

the river's flow rate steadily increases, as rainfall upstream flows past the site. After the 72 

hours elapse,  the conditions do not improve,  but the river  depth starts  to rise,  which 
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causes  the  GridStix  system  to  adopt  the  S3 target  system  configuration.  After 

approximately 36 hours of the river's depth slowly increasing, GridStix nodes begin to 

become submerged, and two nodes soon fail. (In the real-life scenario reflected by these 

conditions, one failed due to flawed waterproofing and the second due to debris damage). 

The weather eventually improves, and the river's depth peaks before all the nodes become 

submerged,  and as  the  flood subsides  the  GridStix  system adopts  the  S2 target  system 

configuration.

The  two  validation  scenarios  consist  of  a  simulator  run  using  the  described 

environmental  conditions,  the  first  run  simulating  poorer  than  expected  Wi-Fi 

performance  by  reducing  the  achievable  communications  range  to  little  above  that 

achieved by Bluetooth (essentially invalidating the “Bluetooth is Less Resilient than Wi-

Fi” claim in Figure 63.

This first simulator run indicated that although the GridStix system was able to survive 

long enough to predict a flood and adapt to S3, the node failures occurring soon after the 

flood event begins caused two nodes (G and J in  Figure 62 on page  166) to drain their 

battery  power  significantly  faster  than  the  other  nodes,  thanks  to  the  increased 

communications traffic flowing between them after nearby nodes had failed. Although the 

simulated flood event subsides before the nodes exhaust their battery power, the results 

indicate that longer floods would see these nodes fail in similar circumstances. Given that 

the invalidated bottom-level claim under study supports selecting Wi-Fi over Bluetooth, a 

second simulator run was conducted with Bluetooth used for communications instead. 

These  results  indicated  that  the  GridStix  system would  survive  for  two to  three  days 

longer in these conditions using Bluetooth. However, if node G or J were to fail during the 

flood event, the network would become fragmented. Thus, the results of the validation 

scenario are that the consequences of the “Bluetooth too Risky for S3” claim not holding 

are  not  catastrophic,  which  means  that  additional  effort  should  not  be  expended  in 

verifying the supporting claims.

The second simulator  run aimed to  assess  the  performance of  the  GridStix  system 

should a fewest hop network topology prove no more resilient than shortest path. This 

Page 173



7.5  Requirements Validation

was achieved by changing the S3 network topology to shortest path (so in this run, the 

fewest hop topology is  exactly as resilient as shortest path) and applying an additional 

power drain so that the nodes were consuming power as if communicating by fewest hop, 

whilst  receiving  only  the  fault  tolerance  level  of  shortest  path.  This  simulation  is 

imperfect because the distribution of power consumption between nodes would differ in a 

fewest-hop topology. The simulation results included several node failures due to battery 

exhaustion,  eventually  fragmenting  the  network.  As  such,  the  validation  scenario 

indicates that the consequences of the “SP too risky for S3” claim are potentially serious, 

and that  some validation activity  should  be undertaken to  ensure  that  the  supporting 

claims are sound.

This second scenario was challenging to construct and visibly imperfect, it should also 

be noted that a simulator run designed to validate the claim would actually have been 

simpler  in  this  instance.  As  such,  this  thesis  recommends  that  care  be  taken  when 

constructing  validation  scenarios;  in  cases  where  effort  can  better  be  expended  in 

validating the assumptions codified by claims it is  better to do this than expend effort 

exploring the consequences of the claim not holding.

The outcomes of the two validation scenarios are relatively clear: the consequences of 

the  “Bluetooth  too  Risky  for  S3”  claim being  invalidated  are  not  severe,  whereas  the 

consequences of the “SP too Risky for S3” claim are.  Thus,  validation effort  should be 

expended on validating the latter by validating its supporting claims.

To conclude, this section demonstrates how validation scenarios may be identified and 

constructed for a target system by analysis of Level-One claim refinement models. It has 

highlighted the explosive increase in validation burden as the number of bottom-level 

claims  in  ReAssuRE models  increases,  and  identified  a  tension  between  the  desire  to 

maximise  the  precision  of  recorded  rationale  and  the  desire  to  minimise  validation 

workload. In mitigation, the section demonstrates the significant reduction in the number 

of validation scenarios that can be achieved by excluding claims in which a greater degree 

of confidence is held, targeting validation effort at the more uncertain claims. 
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The systematic identification of areas of uncertainty within a DAS specification was 

considered useful by GridStix's developers, particularly in conjunction with the previously 

discussed possibility of uncovering implicit assumptions when first constructing the Claim 

Refinement Models. The system developers felt, however, that the number of validation 

scenarios  required  to  cover  all  combinations  of  broken  and  held  assumptions  was 

burdensome, and as such the simple method of prioritising key scenarios was welcome.

The section shows also that validation scenarios can be difficult to construct for a given 

combination of claims holding or otherwise, and that in some cases it may be beneficial to 

assume the outcome of a validation scenario indicating a need for claim validation when 

said validation can be performed more easily and effectively.

7.6 Model-Driven Adaptation

Chapter  6 discusses  the  use  of  ReAssuRE  models  at  run  time  to  guide  a  DAS's 

adaptation. This thesis proposes the monitoring of assumptions in a manner analogous to 

requirements monitoring [30], modifying Level-One Claim Refinement Models to reflect 

operating conditions when assumptions are found to no longer hold by invalidating the 

claims  representing  broken  assumptions,  and  re-deriving  adaptation  policies  from the 

changed models to yield new adaptive behaviour. This section demonstrates the model 

modifier  discussed  in  Section  6.3,  and  shows  that,  in  some  circumstances,  a  m-DAS 

version of the GridStix system can adapt to and is better equipped to tolerate unforeseen 

environmental conditions. 

In devising a m-DAS using assumption monitoring, the first step to be taken is the 

identification of assumptions for which monitors can be devised. Returning to the claim 

refinement model for GridStix's S3 target system, depicted in Figure 49 on page 149, there 

are nine claims in total. However, not all of these claims prove monitorable.

Of the claims in  Figure 49, just five are directly monitorable, and monitoring one of 

the five would be needless. The “River about to flood in D3” claim is, of course, already 
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monitored by the DAS to allow transitioning out from the S3 target system. As such, the 

claim is treated as un-monitorable. The four remaining monitorable claims are: “Single-

Node [Image Processing] Reduces Accuracy”, “SP is less Resilient than FH”, “Faults Likely 

in S3” and “Bluetooth is less Resilient than Wi-Fi”.

Monitoring the “Single-Node [Image Processing] Reduces Accuracy” claim would be a 

matter of maintaining a record of the percentage of predicted floods that occur, or the 

percentage of actual floods not predicted whilst using multi-node and single-node image 

processing.  In  the  event  of  the  two  percentages  converging,  or  even  the  single-node 

prediction accuracy being found higher, the claim could be invalidated.

Monitoring  of  the  “SP  is  less  Resilient  than  FH”  claim  would  take  the  form  of 

recording the number of GridStix nodes that need to fail before any remaining functional 

nodes  become separated  from the  main  network,  unable  to  communicate.  Given  that 

network partitions impact the ability of the GridStix system to predict floods, the GridStix 

system is designed to minimise this occurrence. Thus,  it  is  expected that if  at all,  this 

assumption would only be invalidated over time.  Monitoring of  the “Bluetooth is  less 

Resilient than Wi-Fi” claim can be similarly achieved.

Monitoring the “Faults Likely in S3” claim is relatively trivial, and can be achieved by 

recording the number of node failures in S3, and comparing the number with those for 

other target systems.

This thesis does not prescribe the form of assumption monitors,  much as the main 

body  of  requirements  monitoring  work  does  not  prescribe  the  form  of  requirement 

monitors  [30] [92]. The  potential  monitors  discussed  above  are  included  merely  to 

illustrate  the  level  of  detail  that  needs  to  be  considered  when  classifying  claims  as 

monitorable  or  otherwise.  The  model  modifier  discussed  in  Section  6.3 adjusts  Claim 

Refinement Models in response to events raised by monitors, propagating a “Broken” label 

throughout the model.  Should a bottom-level claim be invalidated either directly by a 

monitoring event or indirectly via label propagation, the associated Strategic Rationale 

model is modified in accordance with a monitoring policy. Figure 64 depicts a portion of 
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the  monitoring  policy  for  the  GridStix  S3 target  system,  covering  the  monitors  and 

modification for two of the four identified monitored claims.

Each of the monitor rules in  Figure 64 stipulate that on receipt of the appropriate 

event (the event objects are packaged in the “gridstixsupport” class), a specific claim on the 

Claim Refinement Model should be invalidated. If the “Broken” label reaches a bottom-

level claim as a result of this model modification, the model modifier should invert the 
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<MonitoringPolicy>
 <MonitorRule>
  <Monitor>
   <Event>gridstixsupport.S3BTLessResWifiEvent</Event>
  </Monitor>
  <Transformation>
   <Node type="claim">
    Bluetooth is less resilient than Wifi
   </Node>
   <Action>INVERT</Action>
  </Transformation>
 </MonitorRule>
 <MonitorRule>
  <Monitor>
   <Event>gridstixsupport.S3NoFaultsEvent</Event>
  </Monitor>
  <Transformation>
   <Node type="claim">
    Faults Likely in S3
   </Node>
   <Action>INVERT</Action>
  </Transformation>
 </MonitorRule>
</MonitoringPolicy>

Figure 64: Snippet of GridStix Monitoring Policy
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contribution of the bottom-level claim on the Strategic Rationale model.  Figure 65 and 

Figure  66 depict  the  Level-One  Claim  Refinement  and  Strategic  Rationale  models 

respectively, after the model modifier has acted on receipt of a “S3BTLessResWifiEvent”, 

which  would  be  raised  by  the  assumption  monitor  covering  the  “Bluetooth  is  Less 

Resilient than Wi-Fi” claim.
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Figure  65 shows  the  “Broken”  label  having  been  applied  to  the  “Bluetooth  is  less 

resilient than Wi-Fi” claim, from where it propagated to the “Bluetooth too risky for S3” 

bottom-level  claim.  Figure  66 shows  that  the  now  invalidated  bottom-level  claim's 

contribution to the strategic rationale model has been inverted: a “Break” contribution as 

opposed to a “Make” on the original model. The inverted contribution means the claim 

now supports the selection of Bluetooth instead of Wi-Fi in the original S3 model. In short, 

these model modifications would mean that if an assumption monitor determined that 

under current conditions, Wi-Fi radio communications were proving no more resilient 

than Bluetooth, the m-DAS would adjust the S3 target system design temporarily to use 

Bluetooth, saving power.

Using  the  model  modifier  with  the  monitoring  policy  depicted  in  Figure  64,  it  is 

possible for a m-DAS to produce the modified models depicted in Figure 65 and Figure 66 
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autonomously. Using the policy generation method discussed in Section 5.2, the m-DAS 

may re-derive updated adaptation policies to reflect the new configuration supported by 

the  modified  models.  Running  the  new  adaptation  policies  in  the  simulator  scenario 

discussed in the previous section, in which Wi-Fi significantly under-performs, indicates 

that the GridStix nodes would survive longer in this configuration under the simulated 

conditions, due to the lower power usage.

In the second example,  Figure 67 and  Figure 68 show the S3 Claim Refinement and 

Strategic Rationale models, respectively, after the model modifier has acted on receipt of a 

“S3NoFaultsEvent”, which would be raised by an assumption monitor covering the “Faults 

Likely In S3” claim.
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As with the previous example, Figure 67 shows the “Broken” label having been applied 

to the “Faults Likely in S3” claim, and in this case having propagated to two bottom-level 

claims: “SP too Risky for S3” and “Bluetooth too Risky for S3”.  Figure 68 shows that the 

two  bottom-level  claims'  contributions  to  the  Strategic  Rationale  model  have  been 

inverted, significantly adjusting the specification for the S3 target system to use less power 

given the reduced threat of node failure. Unsurprisingly, a simulator scenario in which 

there are few or no node failures whilst S3 is active, indicates that the less fault tolerant yet 

more energy efficient configuration reached after model modification is preferable.

To conclude, this section has demonstrated how the model transformer presented in 

Section  6.3 could modify the models of a larger DAS at run time in response to events 

raised by assumption monitors. The availability of a GridStix simulator has allowed the 

section to  verify  that  the  model  modifications  and resultant  changes  to  target  system 
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specifications  are  indeed beneficial  under  the  circumstances  under  which they would 

occur.  This  ability  to  depart  from  the  original  system  specification  in  response  to 

unexpected operating conditions represents a step forward in the state of the art with 

respect to DASs, with previous DASs possessing only an ability to select between explicitly 

pre-specified  configurations,  which  are  of  course  dependent  on  developers  having 

predicted operating conditions accurately.

It is debatable whether a m-DAS capable of adopting a finite number of configurations 

not codified as target system designs is truly devising a new configuration. Likewise, the 

act of identifying and modelling assumptions, and monitoring them could be considered to 

be affording some consideration to a set of circumstances a m-DAS may encounter outside 

of  the  originally  envisaged  domain,  particularly  if  those  conditions  are  then  tested. 

However,  a GridStix m-DAS as discussed in this section would certainly have a wider 

operational envelope than its (non model-driven) DAS counterpart, and would certainly 

be  less  tied  to  rigid  domain  partitioning  than  the  original  system.  Thus,  a  suitably 

constructed m-DAS offers an opportunity to create a less brittle autonomous system. 

Of course, granting a system any degree of autonomy removes a proportionate degree 

of  assurance over its  behaviour.  A standard DAS (non m-DAS) guarantees that it  will 

always be in one of a set number of pre-specified configurations, - even if there is a risk of 

the  DAS being in  an undesirable configuration under  some circumstances.  A m-DAS, 

however, offers no such guarantee in that one or more of the configurations may have 

been  modified  in  response  to  monitoring  data.  Thus,  the  issue  of  validating  m-DAS 

behaviour becomes increasingly important. The next section discusses how the possibility 

of emergent behaviour as a result of modification can be explored and mitigated.

7.7 Testing for Emergent Behaviour

The limited ability of a m-DAS to tailor its operation to operating conditions outside of 

those envisaged by developers presents an opportunity to develop systems able to operate 
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in  more  volatile,  or  less  well  understood  environments  than  even  standard  DASs. 

However, granting this additional autonomy removes the ability of the developer to be 

completely  sure  of  the  system's  behaviour  under  all  operating  contexts.  For  systems 

requiring a good degree of assurance, this combination of environmental and behavioural 

uncertainty proves problematic. 

Section  7.6 demonstrates that a version of the GridStix DAS retrofitted with model-

driven adaptive capability would be better equipped to operate in contexts in which the 

assumptions underpinning its design no longer hold. However, in circumstances where 

the m-DAS has adjusted its behaviour outside the original specification, it is very difficult 

to offer assurance that the m-DAS's behaviour will be appropriate, yet alone correct or 

optimal.

Two potential solutions that may offer a good degree of assurance without sacrificing a 

m-DASs flexibility is to use human monitoring, or human-in-the-loop adaptation (or at 

the very least human in-the-loop model modification). Unfortunately, the GridStix system 

operates in a remote location and communicates over a low bandwidth cellular link. Thus, 

a human in the loop would be infeasible, and the amount and detail of monitoring data 

that  can be  transmitted.  coupled with the inherent  delay in burst-mode transmission, 

would render monitoring ineffectual. Thus, the GridStix developers must rely on testing 

to deliver assurance.

The GridStix system is something of a borderline case with regards to classification as a 

safety-critical  system.  The  environment  agency  and  the  met.  office  have  other 

mechanisms in place to predict and warn of floods, meaning that life and limb are not 

directly or exclusively reliant on the system. However, it is trivial to imagine a scenario in 

which a failure of the GridStix system to deliver a timely flood warning would negatively 

impact the ability of those affected to evacuate and escape the rising water. Regardless of 

whether the GridStix system may be formally classified as safety-critical, it is clear that 

the developers would like to maximise the degree of assurance offered.
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Although the GridStix  system's  individual components,  the specified target  systems 

and the GridStix system's adaptive behaviour all need to be tested, the testing required by 

a standard DAS is assumed. The section focusses instead on the additional testing required 

to  uncover  emergent  behaviour  in  the  m-DAS  as  a  result  of  model  modification.  As 

discussed in Section 6.4, testing for emergent behaviour as a result of model modification 

involves devising test cases for all combinations of held and broken bottom-level claims, 

in much the same way as validation scenarios are devised. Thus, as with the validation 

scenarios in Section  7.5, the Level-One Claim Refinement Model for GridStix's S3 target 

system (depicted in Figure 49 on page 149) is analysed. 

The three bottom level claims depicted in Figure 49 would yield seven combinations 

for which testing scenarios need be devised. A table of the individual combinations was 

presented as  Table 5 on page  169 for  reference.  As with the validation scenarios,  the 

explosive increase in required test cases as the number of bottom-level claims rises means 

that some way of prioritising the most likely to be encountered test cases is beneficial, and 

claim refinement models are again annotated with confidence labels.

However,  when dealing with m-DAS test cases,  the meaning of the “Unbreakable” 

label is changed. Previously, when dealing with validation scenarios, the “Unbreakable” 

has  been  lent  to  claims  in  which  full  confidence  is  held.  For  m-DAS  test  cases, 

“Unbreakable” label refers to the m-DAS having no means to monitor the claim. Thus, 

only claims which are unmonitorable (or merely un-monitored) and cannot be invalidated 

through propagation are labelled “Unbreakable”. Monitored claims, even if axiomatic, are 

classified  either  as  “Qualified”  or  “Uncertain”,  depending on the degree  of  confidence 

held. In borderline cases, the risk of claim falsification may be considered, with claims 

supporting large branches of the model classified “Uncertain”.

Figure  69 depicts  the  Claim  Refinement  Model  for  the  S3 target  system  with 

confidence labels for test case consideration. Claims the m-DAS can monitor directly are 

labelled  “Monitorable”,  and  have  a  certainty  label  applied.  The  certainty  labels  are 

propagated throughout the model, and the remaining claims labelled as “Unbreakable”.
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The annotations in the model depicted in  Figure 69 differ slightly from those in the 

model  depicted  in  Figure  63 on page  170,  as  a  result  of  the  difference in  criteria  for 

labelling claims “Unbreakable”. In Figure 63, the “Faults Likely in S3” claim was labelled 

“Unbreakable”, given that a flooding river is certain to render GridStix nodes inoperable 

whilst submerged, and the additional risk of causing node damage either through water 

damage  or  due  to  debris.  In  Figure  69,  however,  the  m-DAS's  ability  to  monitor  the 

number of faults encountered whilst the S3 target system is active means that the claim is 

labelled “Qualified”.

To devise testing scenarios to uncover emergent behaviour as a result of  a  m-DAS 

performing  model  modification,  it  is  necessary  to  provide  testing  coverage  for  all 

combinations  of  invalidated  bottom-level  claims,  in  a  manner  similar  to  the  way 

identification of validation scenarios was carried out for the system in Section 7.5. When 

creating  validation  scenarios,  ideally  all  combinations  would  be  considered,  with 

unbreakable  and,  if  necessary,  qualified  claims  excluded  solely  to  reduce  validation 

burden.  However,  when  devising  testing  scenarios,  unbreakable  claims  can  safely  be 

omitted in all cases, given that the m-DAS has no ability to monitor and thus invalidate 

unbreakable  claims.  Thus,  to  offer  complete  testing  coverage  of  the  results  of  model 

modification, it is necessary to devise test cases covering all combinations of qualified and 

uncertain bottom level claims being invalidated or holding.
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The number of test cases required can be calculated in the same way as the number of 

validation scenarios required for a given number of bottom-level claims was calculated. 

The number of test cases (T) can be found from the number of bottom-level claims (n) 

using the formula:  T=2n-1. One is subtracted here, because the combination of claims in 

which all hold is the original target system design, without any model modification having 

occurred.  Thus,  seven testing scenarios  are needed to explore the S3 target  system for 

possible emergent behaviour as a result of model modification. In cases in which providing 

testing coverage for all combinations of claims is too burdensome, it is possible to exclude 

the bottom-level claims classed as qualified, at the expense of it being possible for the m-

DAS to adopt a completely untested configuration in some circumstances. This exclusion 

also introduces the risk of inaccuracy in claim classification: a bottom-level claim classed 

as qualified (either directly or using propagation) that is later invalidated would mean that 

the m-DAS may adopt an untested configuration, when a more cautious categorisation 

would have meant the configuration was tested.

Table 8 below depicts the number of testing scenarios required by all of the GridStix 

target  systems,  testing either  all  combinations  of  qualified  and uncertain  bottom-level 

claims, or just combinations of uncertain bottom-level claims. The “All Claims” column is 

included  to  illustrate  the  benefit  of  adjusting  the  criteria  for  “Unbreakable”  claim 

classification,  as without this adjustment, they too would need to be considered when 

devising test cases.

Target 

System

All Claims Excluding 

Unbreakable Claims

Excluding Qualified & 

Unbreakable Claims

S1 31 7 0

S2 7 3 1

S3 7 7 3

Total 45 17 4

Table 8: GridStix Test Case Reduction using Claim Classification
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Table  8 shows  that  excluding  qualified  claims  from  test  case  generation  offers  a 

significant reduction in testing burden, whilst still testing the configurations adopted in 

cases  where  the  riskier  claims  are  invalidated.  Focussing  testing  effort  on  the  model 

modifications most likely allows limited testing resources to  be directed appropriately, 

albeit  risking  the  possibility  of  a  m-DAS  adopting  an  untested  configuration.  Even 

uncertain  claims are  expected  to  hold,  as  assumptions  are  expected  to  be  validated  as 

understanding of the environment and system components improves, which means that 

some  may  find  this  risk  acceptable.  Devising  test  cases  to  cover  all  combinations  of 

qualified and uncertain claims, however, allows a m-DAS's additional adaptive capability 

to be fully tested.

The differences between the figures presented in Table 8 and those in Table 7 on page 

172 are  again  due  to  the  change  in  criteria  governing  the  classification  of  claims  as 

“Unbreakable”. 

To conclude, this section uses a detailed case study to illustrate how test cases designed 

to uncover emergent behaviour as a result of model modification can be constructed for a 

m-DAS. The section highlights the differences between the claim classification used in 

requirements validation and testing, and shown how this adjustment reduces the number 

of test cases required. The section demonstrates how this number can be further reduced 

by excluding qualified claims from consideration, but has discussed the risk inherent in 

doing so.

As discussed in the previous section, the act of performing testing to verify a m-DAS's 

behaviour  after  all  potential  model  modifications  means  that  a  key  m-DAS's  benefit: 

tailoring behaviour to  unforeseen operating conditions,  is  removed.  If  the  m-DAS has 

been tested under a set of conditions, just how unforeseen can they actually be? Of course, 

if testing scenarios are omitted, for example after using the test case reduction method 

discussed in this section, there are still some sets of conditions under which the m-DAS's 

behaviour  is  less  certain.  However,  the  GridStix  m-DAS  certainly  offers  a  wider 

operational  envelope  than  the  original  system,  and  this  section  demonstrates 

circumstances in which this could prove beneficial.
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7.8 Chapter Conclusion

The  chapter  demonstrates  the  production  and  use  of  ReAssuRE  models  for  a 

substantial, real life DAS. The case study confirms it possible to capture real-life rationale, 

which may be nuanced or contradictory and overlapping several related decisions, using 

claims.  Furthermore,  the  case  study  shows  that  relatively  complex,  balanced,  real-life 

rationale can, once captured, be used to better manage change; which may affect a DAS's 

specification due to actual changes in the environment or goals, or as understanding of the 

originally envisaged environment and DAS improves.

 The availability of a  GridStix simulator,  allowing the performance of the GridStix 

system with different adaptation policies to be assessed under controlled environmental 

conditions, serves as an asset in validating the outcomes requirements changes effected 

using  traceability  information  from  ReAssuRE  models.  Given  that  the  discussed 

requirement changes were scenario based, the ability to verify that configuration changes 

arrived at, and potentially steered towards by ReAssuRE models are indeed beneficial in 

the  scenario  detailed  means  that  this  chapter  has  demonstrated  the effectiveness  of  a 

change process using tracing information from the models.

The  case  study  allows  the  adaptation  policy  derivation  method,  and  associated 

generation tool discussed in Section 5.2 to be validated by comparing the policies created 

by  the  tool  with  those  originally  created  by  hand  for  the  DAS during  development. 

Verifying this ability is important, given the reliance of the m-DAS architecture discussed 

in Section 6.3 on the policy derivation method, which is used to derive new target system 

configurations after model modification.

The  case  study  offers  significant  insight  into  the  utility  of  ReAssuRE  models  in 

identifying areas of uncertainty in a DAS's specification, and in devising ways in which 

the  consequences  of  the  uncertainty  on  the  DAS's  operation  can  be  explored  using 

validation scenarios. The case study identifies a limitation in the usefulness of validation 

scenarios, after it was noted that in some circumstances, it is easier to undertake effort on 
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validating an assumption codified in a claim than it is to explore the behaviour of the DAS 

should the assumption prove erroneous.

The case study's exploration of the potential benefits of granting the GridStix system 

more  autonomy  over  its  operation  by  converting  it  to  a  m-DAS  moves  beyond  the 

capability implemented in the deployed system. However, the case study allows both the 

utility and potential risk of allowing a system to devise its own configurations in limited 

circumstances outside those envisaged at design time to be assessed.

The case study allows the m-DAS emergent behaviour test-case identification method 

discussed  in  Section  6.4 to  be  examined,  with  the potentially  burdensome amount  of 

required testing emerging as a significant obstacle. In mitigation, the test case reduction 

method also  discussed  in  Section  6.4 is  shown to  offer  a  significant  reduction in  this 

burden by discarding unnecessary test-cases, and an even larger reduction possible if the 

level of assurance required is dropped, and the risk of claim mis-classification acceptable. 
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8 Conclusions and Future Work

This thesis examines the use of rich tracing information in requirements models for 

dynamically adaptive systems. Such tracing information can be used to manage change, 

which this  thesis  has argued will  be prevalent given the uncertain,  volatile  and often 

novel nature of DASs and their operating environments. This thesis has also demonstrated 

how the captured tracing information can be  used to  identify  areas  of  uncertainty  in 

understanding of the environment or expected system behaviour, with a view to either 

reducing or mitigating the uncertainty. 

This thesis also demonstrates how the same tracing information could be used by a 

DAS itself at run time, to better adapt to unforeseen operating conditions. This run-time 

use  of  tracing information captured in  design-time requirements models  is  not  only  a 

novel concept, but offers the potential to create DASs with a greater degree of autonomy 

than currently possible.

This chapter starts by returning to the research questions posed at the beginning of the 

thesis, in Section 1.3. The answers to the questions which have emerged throughout the 

thesis  are  presented  and  discussed.  The  chapter  then  revisits  the  research hypothesis, 

presented in Section 1.4, examining the results of the case study presented in Chapter 7 to 

see  whether  they  support  the  original  hypothesis.  The  chapter  then  discusses  the 

limitations of the research, before moving on to discuss the possible future work opened 

up by the research. Finally, the chapter offers some closing remarks, drawing the thesis to 

a close.

8.1 Research Questions Revisited

This section revisits the research questions presented in Section 1.3, and discusses the 

answers to each, in turn, that have emerged throughout the thesis. 
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The first research question is:

To what extent is a DAS's adaptive behaviour merely a derivation of environmental

analysis and configuration decisions?

Section 5.2 presents and discusses an adaptation policy generator, capable of deriving 

adaptation policies compatible with the GridKit [39] middleware from ReAssuRE models. 

Adaptation policies,  as  discussed  in  Section  2.4.1,  prescribe  the  adaptive  behaviour  of 

DASs  built  using  policy-driven  adaptive  middleware.  ReAssuRE  Level-One  Strategic 

Rationale and Level Two models codify the results of environmental analysis undertaken 

during the RE process and the outcome of decisions based upon this analysis. Thus, the 

ability of the policy generation tool to derive adaptation policies controlling DAS adaptive 

behaviour indicates that the answer to this question is “entirely”.

Section  5.2 also  presents  a  similar tool  capable of generating specifications of DAS 

adaptive behaviour in the Genie Domain Specific Language (DSL) [107]. This tool allows 

other  adaptive  infrastructures,  using  incompatible  policy  formats,  to  use  adaptive 

behaviour  specifications  derived  from  ReAssuRE  models.  This  ability  to  generate 

middleware-independent adaptive behaviour serves to prove the generality of the adaptive 

behaviour  derivation  approach,  lending  additional  credence  to  the  claim  that  DAS 

adaptive  behaviour  is  a  mere  derivation  of  environmental  analysis  and  configuration 

decisions taken during the RE process.

The second research question is:

Can the information from the environmental analysis and configuration decisions

be codified in models, and is it useful to do so?

It could be argued that the existing LoREM process  [16], upon which ReAssuRE is 

based,  had an existing ability  to  record  configuration decisions,  which are  a  result  of 

environmental analysis. However, Section 4.2 demonstrates that this ability is limited in 

that the rationale behind the decisions, also a result of environmental analysis, remains 

implicit.  ReAssuRE  models  use  claims  to  record  the  rationale  behind  configuration 
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decisions, along with the alternatives considered, meaning that more of the information 

discussed in this research question is codified in ReAssuRE models. Sections 5.1.2 and 7.2 

demonstrate  the  utility  of  this  additional  information,  codified  in  model  form,  in 

performing model evolution.  Sections  5.3 and  7.5 demonstrate the utility of this  same 

information in performing requirements validation. Sections  6 and 7.6 demonstrate how 

the information could be used in model form by DASs at run time to adapt to unforeseen 

operating conditions. Thus, this research question can be answered positively.

The third research question is:

Given  that  both  the  information  from  the  environmental  analysis  and  the

configuration decisions are subject to change, how can the workload of deriving a

DAS's adaptive behaviour be reduced?

As  discussed  in  answering  the  second  research  question,  Sections  5.1.2 and  7.2 

demonstrate how the improved traceability of ReAssuRE models enhance changeability. 

Improving the changeability of the requirements models from which a DAS's adaptive 

behaviour is derived can help to reduce the workload induced by a change. As for the 

workload involved in performing adaptive behaviour derivation specifically, Section  5.2 

presents  two  tools  capable  of  deriving  adaptation  policies  or  Genie  DSL  adaptive 

behaviour  specifications,  respectively.  These  tools  can  all  but  eliminate  the  workload 

associated with re-deriving DAS adaptive behaviour after models have been changed.

The fourth research question is:

How can a system be designed with a greater degree of autonomy than current

state-of-the-art DASs, and is the extra autonomy useful?

Chapter 6 discusses how a Model-driven Dynamically Adaptive System (m-DAS) could 

be constructed using ReAssuRE models and assumption monitoring. Such a system would 

have the ability to adopt configurations not explicitly specified at design time when faced 

with one or more modelled assumptions that no longer hold. Section  7.6 demonstrates 
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how  this  extra  autonomy  could  prove  useful  should  the  understanding  upon  which 

individual target system designs were based prove to be incorrect at run time.

The fifth and final research question is:

How can the testing workload be managed in systems with greater autonomy?

The  answer  to  this  final  research question  is  less  conclusive.  Sections  6.4 and  7.7 

demonstrated a method by which limited testing resources could be directed to the most 

likely  of  testing  scenarios  that  have  the  potential  to  uncover  emergent  behaviour. 

However, the degree of assurance it is possible to afford to a system capable of adopting 

unexpected  and  untested  configurations  will  inevitably  be  reduced.  Other  means  of 

delivering assurance such as monitoring or human-in-the-loop adaptation, or human-in-

the-loop model evolution, may prove a more acceptable solution.

8.2 Research Hypothesis Revisited

This  section  revisits  the  research  hypothesis  presented  in  Section  1.4,  which  is 

repeated below:

When  performing  early-phase  RE  for  a  Dynamically  Adaptive  System,  the

recording of additional tracing information will better support change later in the

software engineering process. Recorded tracing information can be used during

development to derive the adaptive behaviour of a DAS (the concern of switching

from one configuration to another as the environment changes), and by the DAS

itself after deployment to better adapt to unforeseen conditions.

The first component of the hypothesis concerns DAS requirements change. This thesis 

has  demonstrated  how  recording  additional  tracing  information  better  supports  this 

change,  with case study examples presented in Sections  5.1.2 and  7.2.  As discussed in 

Section 5.1.1, some classes of DAS requirements change are indeterminate in their tracing 

requirements. Therefore, it is of course impossible to determine that  all change is better 
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supported  by  ReAssuRE  models'  additional  tracing  information.  However,  this  thesis 

demonstrates  that  some changes  are  better  supported  by  the  recording  of  additional 

traceability information, demonstrating the approach's utility.

The  second  component  of  the  hypothesis  concerns  the  use  of  tracing  information 

codified in ReAssuRE models to derive DAS adaptive behaviour. Sections  5.2 and  7.3 of 

this  thesis  demonstrates  an  ability  to  derive  adaptation  policies  directly  or  to  derive 

adaptive behaviour specified in an appropriate Domain Specific Language in Sections 5.2 

and 7.3. Thus, this clause of the hypothesis is supported by the research presented in this 

thesis.

The final clause of the hypothesis concerns the use of tracing information codified in 

ReAssuRE models to guide DAS adaptation at run time. This thesis demonstrates a method 

by which a new type of DAS, a m-DAS, which uses design-time requirements models to 

guide run-time adaptation. Section 6.3 presents an architecture by which a m-DAS may be 

constructed using ReAssuRE models and assumption monitoring techniques. Section  6.3 

also presented a proof-of-concept model transformer component that demonstrates the 

viability of such a system. The ability of a m-DAS using the described architecture and the 

proof  of  concept  model  transformer  to  better  adapt  to  unforeseen  conditions  is 

demonstrated  in  Section  7.6.  Thus,  this  clause  of  the  hypothesis  is  supported  by  the 

research presented in this thesis.

Section 1.4 describes the method used to conduct the research presented in this thesis. 

The wide and varied nature of the Software Engineering discipline hinders the emergence 

of  a  single  accepted  research  method  [12]. The  synthetic  nature  of  this  thesis's  more 

specific  field:  requirements  modelling,  lends  the  use  of  case  studies  as  an appropriate 

validation tool. Chapter 7 makes use of simulation to more objectively validate this thesis's 

claimed  benefits  within  the  more  detailed  case  study.  The  outcomes  of  the  two  case 

studies, taken complete with the simulator results where appropriate, lead to an overall 

conclusion that the hypothesis is substantially supported.
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8.3 Limitations

This  section  highlights  the  limitations  of  the  research,  along  with  some reflective 

discussion of the limitations and possible mitigation.

Perhaps the most significant limitation of the work is the requirement for an operating 

environment to be partitioned into distinct domains. This requirement was inherited from 

the LoREM method upon which ReAssuRE is based  [16],  and in turn the original  RE 

perspectives defined in  [10]. Although this thesis is clear that ReAssuRE's applicability 

extends only to systems whose operating environments may be partitioned, there exists no 

research  defining  whether  all,  some,  or  few  proposed  DAS  environments  meet  this 

criterion.  One  potential  avenue  of  future  research lies  in  the  analysis  of  proposed  or 

implemented DASs to establish the proportion of DAS operating environments for which 

approaches requiring domain partitioning would be appropriate.

Another important limitation is inherited from the i* modelling ontology itself  [71]. 

The complexity of i* models as scale increases is a known concern [104] [105] [106], and 

although i* modelling tools feature conditional display tools allowing modellers to work at 

varying  degrees  of  abstraction  [84] [73],  the  problem remains  largely  unsolved.  Thus, 

ReAssuRE  models  which  require  additional  model  elements  to  record  rationale,  are 

subject to the problem to an even greater degree. 

The separation of Claim Refinement Models from Strategic Rationale at Level One 

limits the additional model elements on Strategic Rationale models to bottom-level claims. 

However,  some  would  argue  that  the  two  Level-One  models  should  be  combined, 

removing the duplication of bottom-level claims between the two. Although possible, the 

significant number of additional model elements placed on the Strategic Rationale model; 

already acknowledged to suffer from clutter, means that this approach is rejected.

Section 4.2.1 discusses the trade off that can be made between the maximisation of the 

detail and precision of recorded rationale versus the minimisation of the number of claims 

required to record it. The decision taken by the modeller on the balance struck between 
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these  competing  objectives  has  a  clear  impact  on  the  complexity  of  the  completed 

ReAssuRE models. Thus, the ReAssuRE method possesses a degree of flexibility which can 

be leveraged to manage the problem of model complexity.

In much the same way as there is a tension between the precision of recorded rationale 

and the complexity of the model in which it is recorded, there is also a tension between 

the number of alternatives to consider and model versus the complexity of the model in 

which they are recorded. This thesis does not prescribe a set number of alternatives to 

consider  for  a  given  decision,  and  as  mentioned  for  the  precision  of  rationale,  the 

ReAssuRE method possesses a degree of flexibility in that it does not depend on a specific 

number of alternatives having been considered. It should be noted, however, that neither 

case study in the thesis had a large number of alternatives for a single decision. Thus the 

value of the tracing information recorded has not been compared to the modelling effort 

required to record more than a handful of alternatives for a single decision.

As mentioned briefly in Section 8.2, and discussed more completely in Section 5.1.1, 

the indeterminate requirements of some classes of DAS requirements change prevents a 

requirements  modelling  method  from claiming  complete  support  for  all  requirements 

changes. This limitation appears insurmountable, and would be shared by any competing 

approach. However, Sections 5.1.2 and 7.2 demonstrate that ReAssuRE models support the 

tracing needs to efficiently support several classes of change a DAS's requirements may be 

subjected to.

The burden of requirements validation when devising systems to operate in uncertain, 

volatile environments is always going to be significant. The validation scenario reduction 

method presented in Section 5.3 allows redundant validation activity to be identified and 

omitted,  and  allows  the  amount  of  remaining  validation  activity  to  be  prioritised. 

However, this method mitigates rather than overcomes the validation burden. Likewise, 

the m-DAS emergent behaviour test case reduction method discussed in Section 6.4 offers 

only  a  potential  reduction in testing burden in  exchange for  a  reduction in  delivered 

assurance.  This thesis,  however,  identifies  other means of delivering m-DAS assurance 

which may prove more appropriate in some cases.

Page 196



8.3  Limitations

There is a final limitation that lies within the research method used. The use of a case 

study is insufficient to prove a hypothesis, merely to demonstrate that it holds in some 

circumstances. Thus, the use of a case study to validate the research presents a threat to 

validity in terms of generality. Typically, methods are best proved beneficial by empirical 

research over  time.  Unfortunately,  the  immature  nature  of  DASs  as  a  class  of  system 

means that there is little opportunity to conduct such empirical research. Thus, although 

this  thesis  can conclude that the research presented supports  its  stated hypothesis,  no 

stronger conclusion can accurately be reached.

8.4 Future Work

In addition to supporting or disproving the thesis's hypothesis. The research presented 

in  this  thesis  allows  new,  previously  unidentified  areas  of  research  to  emerge.  Such 

research would either enhance the support of this thesis's hypothesis or allow the research 

to be further extended delivering greater or wider benefit. This section details several of 

the identified areas in which future research would be beneficial.

The  most  promising  avenues  of  future  research  stem  from  the  Model-driven 

Dynamically  Adaptive  Systems (m-DASs)  discussed  in  Chapter  6 and demonstrated  in 

Section 7.6. a m-DAS possesses a limited ability to tailor its operation to conditions outside 

those envisaged a priori, which is a novel capability. The m-DAS architecture presented in 

Section 6.3 uses ReAssuRE models and assumption monitoring, which is in itself a novel 

re-purposing of requirements monitoring [30] [95] techniques. 

There is currently significant research interest in the use of requirements models at 

run time  [112] or some other representation of system requirements  [97]. Furthermore, 

the potential, and consequences, of a system capable of tailoring its operation to conditions 

not envisaged at design time, using any means, is relatively unexplored. The construction 

of a m-DAS using the architecture detailed in Section 6.3 would allow research in these 

areas to be conducted effectively.
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8.4  Future Work

Although this thesis demonstrates a proof of concept for a m-DAS constructed using 

ReAssuRE models as run-time representations of DAS requirements and using assumption 

monitoring to drive model transformation, it may be possible to construct a m-DAS using 

other means. Other run-time requirements representations, or other means of performing 

model transformation may exhibit characteristics different from those exhibited by m-

DASs  constructed  as  described  in  this  thesis.  Thus,  research could  be  conducted  into 

alternate means of constructing m-DASs.

As  mentioned  in  the  previous  section,  the  immature  nature  of  DASs  as  a  class  of 

system  means  empirical  data  on  their  performance,  effectiveness,  and  suitability  for 

different types of operating environment is scarce. For the novel m-DAS, this scarcity is 

exaggerated. Thus, there is a significant need for empirical research into deployed, real-

world, DASs and m-DASs.

As  mentioned  earlier  in  this  section,  the  application  of  requirements  monitoring 

techniques to assumptions is, in itself, novel. Although this thesis makes no claim as to the 

utility of assumption monitoring in a system other than a m-DAS, there is a possibility of 

the  technique  being  used  in  non-adaptive  systems.  In  such  systems,  assumption 

monitoring  could  be  used  in  a  manner  similar  to  requirements  monitoring,  to  better 

inform stakeholders of operating conditions outside those the system was designed for, 

and  to  better  inform  maintenance  and  tuning  activity  of  the  experienced  operating 

environment.  Research  could  thus  be  performed  examining  the  use  of  assumption 

monitoring data in performing research and tuning.

Section  8.3 identified  a  limitation  to  the  research in  that  there  exists  no  research 

establishing the number or proportion of adaptive system operating environments that can 

be suitably partitioned for ReAssuRE or related approaches. If few operating environments 

can be partitioned into domains, ReAssuRE and related approaches solve a niche problem. 

If more or most environments may be suitably partitioned, the case studies presented in 

this thesis may more closely resemble the general case. Thus, research is required into 

adaptive system operating environments.
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8.5  Closing Remarks

8.5 Closing Remarks

This thesis explores the use of tracing information in requirements models to increase 

the  utility  of  the  models  later  in  the  requirements  engineering  process,  later  in  the 

software engineering process, and at run time. The tracing information can be used later 

in  the  RE  process  to  effect  requirements  change  efficiently,  or  to  identify  areas  of 

uncertainty in the analyst's understanding of the system or environment. At run time, a 

suitably constructed m-DAS can use the tracing information to adapt to contexts beyond 

those envisaged at design time. Used later in the SE process, the tracing information can 

be used to derive a system's adaptive behaviour, or to identify key testing scenarios for m-

DASs.

This  thesis  presents  the  ReAssuRE  modelling  process,  which  defines  modelling 

perspectives  from  which  a  DAS  is  viewed,  and  prescribes  the  recording  of  tracing 

information that can be used as described above. Also presented is a proof of concept for 

the m-DAS class of system, which interprets ReAssuRE models at run time, transforming 

them in response to monitored conditions and deriving new adaptive behaviour when 

appropriate.

The  novel  m-DAS  class  of  system  has  the  potential  to  allow  the  construction  of 

systems offering a greater degree of autonomy than currently possible, which may well 

prove to be something of a double-edged sword. Systems capable of a greater degree of 

autonomy may prove suitable for operation in more volatile, more uncertain and less well 

understood environments. However, systems capable of greater autonomy are far more 

challenging  to  deliver  assurance  in,  and thus  to  depend  upon.  The  two edges  of  this 

metaphorical sword represent the areas in which this thesis aims to drive further research.
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Appendix A – Image Viewer's Adaptation Policy

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ReconfigurationRules>

<ReconfigurationRule>
<FrameWork>Cache</FrameWork>
<Events>

<Event>
<Type>HIGH_LATENCY</Type>
<Value/>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Cache</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>Cache</FrameWork>
<Events>

<Event>
<Type>LOW_LATENCY</Type>
<Value/>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.No_Cache</Name>

</Reconfiguration>
</ReconfigurationRule>

</ReconfigurationRules>
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Appendix B – GridStix Adaptation Policy

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ReconfigurationRules>

<ReconfigurationRule>
<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.MultiNode</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Wifi</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>TRUE</Value>
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</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.FewestHop</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Wifi</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.SingleNode</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>
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<Value>FALSE</Value>
</Event>

</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Bluetooth</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.SingleNode</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>TRUE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.FewestHop</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
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<Type>HIGH_FLOW</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.ShortestPath</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>HIGH_FLOW</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.Bluetooth</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>

<Event>
<Type>FLOODPREDICTED</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.MultiNode</Name>

</Reconfiguration>
</ReconfigurationRule>
<ReconfigurationRule>

<FrameWork>SpanningTree</FrameWork>
<Events>
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<Event>
<Type>FLOODPREDICTED</Type>
<Value>FALSE</Value>

</Event>
</Events>
<Reconfiguration>

<FileType>Java</FileType>
<Name>Reconfigurations.ShortestPath</Name>

</Reconfiguration>
</ReconfigurationRule>

</ReconfigurationRules>
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Appendix C – Annotated GridStix Claim 

Refinement Models

This appendix contains the Level-One Claim Refinement Models for the S1, S2 and S3 

GridStix target systems, annotated with the monitoring and certainty labels used in the 

test-case identification and reduction methods.
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S1
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S2
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S3
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Appendix D – Pseudocode for Policy Generation

list VariationPoints = list()
for each Goal that appears in all Level-One SR models {

if ( count(tasks are connected to the goal with means-end links) > 1 ) {
VariationPoints.Add(Goal)

}
}
list Reconfigurations = list(SourceTS, DestTS, RemoveComponent, AddComponent)
for each valid target system transition {

for each VariationPoint in VariationPoints {
if (pickedTask(sourceTS,VariationPoint) != pickedTask(destTaS,VariationPoint) 
{

Trigger = getTrigger( getLevel2(SourceTS, DestTS) )
writeRule(

pickedTask(sourceTS,VariationPoint),
pickedTask(destTS,VariationPoint),
Trigger

)
}

}
}

function pickedTask(TargetSystem, Goal) {
for each Claim in TargetSystem.getClaims() {

for each Task in TargetSystem.getTasks() {
if ( isLinked(TargetSystem,Claim,Task) ) && ( supports(Claim,Task) ) 

{ return Task; }
}

}
}

function getTrigger(Level2Model) {
FireEventTask = Level2Model.findTask("Fire Event When Environment Changes");
List PotentialTriggers = FireEventTask.getConnectedTasks();
for each PotentialTrigger in PotentialTriggers {

if ( PotentialTrigger.startsWith("Fire") ) { return PotentialTrigger; }
}

}

supports function returns true if claim has a "make" link to a positive 
contribution link attacked to specified Task, or a "break" to a negative

writeRule function writes a rule for the specified component switch and trigger
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