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Abstract. [Context and motivation] All systems are susceptible to the need for 
change, with the desire to operate in changeable environments driving the need 
for software adaptation. A Dynamically Adaptive System (DAS) adjusts its be-
haviour autonomously at runtime in order to accommodate changes in its operat-
ing environment, which are anticipated in the system's requirements specification. 
[Question/Problem] In this paper, we argue that Dynamic Adaptive Systems' re-
quirements specifications are more susceptible to change than those of traditional 
static systems. We propose an extension to i* strategic rationale models to aid in 
changing a DAS. [Principal Ideas/Results] By selecting some of the types of 
tracing proposed for the most complex systems and supporting them for DAS 
modelling, it becomes possible to handle change to a DAS' requirements effi-
ciently, whilst still allowing artefacts to be stored in a Requirements Management 
tool to mitigate additional complexity. [Contribution] The paper identifies differ-
ent classes of change that a DAS' requirements may be subjected to, and illus-
trates with a case study how additional tracing information can support the  
making of each class of change. 
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1   Introduction 

Changes can be required of a system at any stage during its design, implementation or 
useful life. In traditional static systems, these adaptations (e.g. changed requirements), 
are made offline by the system developers as maintenance. Recently a new class of 
system has begun to emerge, capable of adapting to changes in its environment 
autonomously at run-time. Such Self-Adaptive or Dynamically Adaptive Systems 
(DASs) are designed for volatile environments where the system requirements and/or 
their priorities may change along with the environment even while the system is run-
ning. The nature of the problem domains for which DASs are conceived are such that 
their environments may be only partially understood at design time. Similarly and 
particularly for embedded DASs, the potential for new and exploitable technologies to 
emerge during the course of the system’s life is high because, with the current state-
of-the-art, a DAS often represents a novel application of emergent technologies. The 
DAS itself may exhibit emergent behaviour as it re-configures itself dynamically, in 
ways and under circumstances that may have been hard to anticipate at design-time. 
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Thus, far from their runtime adaptive capability making them immune to the need for 
offline adaptation, DASs are particularly susceptible to it.  

It has long been recognized [1] that requirements management (RM) is needed to 
help deal with anticipated change by recording (among other items of information) as 
traces the relationships between requirements and the down-stream artifacts of the 
development process. This allows questions about how requirements came to be and 
how decisions were reached to be answered later in the development process, or in-
deed after deployment. Given the identified need for evolvability and the variety of 
factors that may mandate it, the importance of traceability information in a DAS is, 
we claim, at least as high or even higher than in a comparable static system. 

In this paper we identify requirements for traceability of DASs and, building on 
our earlier work on using goal models to discover DAS requirements [2], [3] show 
how i* [12] models can be augmented to record this information, for later integration 
in a Requirements Management tool. 

The rest of this paper is organised as follows: Section 2 looks at related work in the 
area of DASs. Section 3 identifies the types of change that the specification of a DAS 
may need to accommodate, section 4 examines the types of traceability required to 
support these changes. Section 5 proposes a lightweight, i* based method of capturing 
these types of traceability information for the purposes of modelling the proposed 
DAS' adaptive behaviour. Section 6 presents a case study demonstrating the use of 
Section 5's method to revisit decisions in light of different types of change, whilst 
Section 7 concludes the paper. 

2   Related Work 

The requirements engineering (RE) community has recently started to investigate 
higher-level runtime representations that would support self-adaptation. Although the 
challenges posed by DASs to RE were first identified over ten years ago – principally, 
in run-time monitoring of requirements conformance [4] [5] [6] [7] – there are few 
current approaches for reasoning at runtime about system requirements.  

There is a strong case that any such approach should be goal-based and a number 
of authors [8], [9], [10], [3] report on the use of goals for modelling requirements for 
DASs. This work commonly recognises that the aim of the system should be to satis-
fice its overall goals even as the environment in which it operates changes. Here, ad-
aptation is seen as the means to maintain goal satisficement, while goal modelling 
notations such as KAOS [11] and i* [12] support reasoning about both functional and 
non-functional (soft-) goals. We have previously argued [2] that  context-dependent 
variation in the acceptable trade-offs between non-functional requirements is a key 
indicator of problems that require dynamically adaptive solutions.  

Goldsby et. al. [3] use i* as part of the LoREM process which partially implements 
the four levels of RE for self-adaptive systems proposed by Berry et al. [13]. The lat-
ter work is interesting because it partitions the environment into discrete domains, 
each of which represent a state of the environment with distinct requirements. The 
system's adapted configuration for each domain is termed a target system. LoREM 
has validated this approach on the requirements for a self-adaptive flood warning sys-
tem implemented in the GridKit adaptive middleware system [14] which we use in 
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this paper as a case study to illustrate our approach to tracing. To date, DASs have not 
attracted any special attention that we are aware of from the RE research community 
for the challenges they pose to RM and tracing.  

Ramesh and Jarke [15] categorise users of traceability information into two groups: 
high and low-level, depending on the types of use made of the information. Two 
traceability uses are of particular interest to DASs: traceability of decision rationale 
and for evolvability. To allow decision rationale tracing, a record needs to be made of 
all the viable alternatives considered, along with assumptions of the impact the selec-
tion of each alternative would have. Typically, this sort of information is only kept by 
so-called high-level traceability users, working on large, complex projects; with 
patchy coverage of rejected alternatives. Requirements evolution can occur due to a 
change in user needs, or due to an identified deficiency in the system. As require-
ments at different levels of detail change, the question “Where did this requirement 
come from?” becomes harder to answer. By explicitly recording changes to require-
ments, it becomes possible to understand how the system has evolved (or needs to) 
over time, and to identify derived requirements that need to be revisited in the light of 
new changes. Given the increased likelihood of change impacting a DAS' require-
ments, the likelihood of encountering derived requirements whose necessity is hard to 
establish, or even understand is also, we argue, increased.  

Furthermore, given that these requirements may form the basis of the justification 
for several decisions, each of which will be repeated (with different environmental 
assumptions) for several target systems, a change in requirements can have a wide-
spread impact. The likelihood of far-reaching change impact means that traceability 
of decision rationale and for evolvability are crucially important for DAS developers 
as a consequence. Therefore, we argue that DASs promote high-level traceability as 
essential practice.  

3   Types of Change 

Although a DAS can adjust its behaviour in response to change whilst in operation, 
this does not mean that all changes can be handled automatically by the system. New 
requirements, new technology or simply a better understanding of the environment 
may all require the system to be re-specified, in whole or in part. If already deployed, 
the system will need to be taken offline for static adaptation to be carried out.  The 
static adaptation process is not radically different to that of a traditional (non-
adaptive) system, but the relative complexity of a DAS coupled with the increased 
likelihood of change means that an inefficient change management process will rap-
idly become problematic. 

Our work [2] [16] builds upon Berry et. al.'s four levels of RE for Dynamic Adap-
tive Systems [13]. Berry et al start with the assumption that the environment in which 
a DAS must operate can be characterized as discrete states or domains. Each domain 
is served by a separate target system, which in a DAS is a conceptualization of a sys-
tem configuration. Hence, when the environment makes the transition for domain 1 to 
domain 2, the DAS adapts from target system S1 to target system S2. 

We use i* [12] to model the system at each level. Level 1 RE is done on a per-
target system basis, specifying how the system functions in each. Level 2 RE specifes 
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which target system to adopt given the runtime context. Level 3 RE specifies the re-
quirements on the system's adaptation mechanism, and how it achieves its level 2 RE. 
Level 4 RE is the most abstract level, covering adaptation mechanisms in general. 
Most changes will involve some modification to the level 1 models, which is the fo-
cus of this work. In cases where a previously made decision is changed, the system's 
level 2 and 3 models may also be affected; these secondary impacts are the subject of 
ongoing work. 

We have identified five distinct classes of change that a DAS' specification may 
need to be adjusted for. Each needs handling differently.  

 
• Environmental Change. This will be particularly common given the inherent 

volatility of a DAS' proposed environment; which increases the likelihood of in-
dividual domains being misunderstood, or entirely new domains being discov-
ered. This class of change may occur during any stage of the system's life cycle, 
and the need for change may be punctuated with a system failure if it emerges 
only after deployment. A change to a previously identified environmental do-
main will trigger the need to re-evaluate the design decisions taken for it, 
whereas the identification of a new domain  will require a new target system 
(and associated model) to be created, possibly based on that of another target. 

• Broken Assumption. This may be an assumption about the environment in a 
given domain ("There will be ample solar power during the day"), or an as-
sumption about a given system component's suitability for a domain  ("Com-
municating via Bluetooth will use less power than Wi-fi"). The assumptions 
underpinning the level 2 modelling ("The environment will not switch directly 
from S1 to S6" or "The system will spend most of its time in S1") are also 
classed as environmental assumptions, and will affect several different levels 
of model. Assumptions such as these may be broken as designers better under-
stand the domain or the proposed system, or may only become apparent after 
deployment. An assumption being broken triggers the need to re-evaluate all 
decisions based upon it. 

• New Technology. The availability of a new technology that can be exploited 
can be modelled as a new alternative for a decision. Given the relative imma-
turity of adaptation frameworks this will likely occur frequently. As with a 
static system, designers need to weigh the potential costs and benefits to de-
cide whether to take advantage of the new technology or not. However, for a 
DAS the designers will need to make the decision for each target system. If the 
new technology is utilised in one or more targets, other decisions that impact 
on the same quality features as the new technology in these targets will need to 
be revisited. 

• Consequential Change. This is so named because the change is necessitated 
as a consequence of a previous change. This kind of change will be particu-
larly important in systems with a budgeted requirement such as a maximum 
power consumption or maximum total weight. In this case, making any of the 
previous types of change can require a re-evaluation of previous decisions 
across all domains, trying either to bring the system back down to budget if the 
change negatively impacted the budgeted requirement, or to more fully utilise 
the budget if the change created headroom. 
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• User Requirements Change. This class of change is of course not specific to 
DASs. However, the impact may reach several target systems, essentially multi-
plying the workload involved in making the change. User requirement changes 
are difficult to predict, and are also variable in the extent of their impact. 

4   Traceability Requirements 

Given the increased likelihood of change impacting the requirements specification of 
a DAS, and the fact that decisions are essentially taken again and again for each target 
system, traceability information becomes more important. Each of the types of change 
discussed in the previous section has differing traceability requirements. 

 

• Environmental Change. When environmental understanding changes, an en-
tire model will need to be reconsidered, or created from scratch if a new do-
main has been discovered. Essentially, this will involve re-making all the  
per-domain decisions in light of the changed (or new) environmental knowl-
edge. For this type of change, the only traceability information needed is the 
ability to identify all the decisions taken for a given target system. In most 
cases, the target systems of a DAS will share much commonality, perhaps ex-
hibiting variability only in a small number of discrete components. As such, 
each's level 1 model will merely be a refinement of another's. 

• Broken Assumption. When an assumption has been broken, either by im-
proved understanding of the environment or available alternatives, or having 
been broken demonstrably in the field, all of the decisions based on this as-
sumption will need to be revisited. In order to facilitate this forward tracing, 
there needs to be a record of all decisions reliant on this assumption, along 
with the information on alternatives required to re-make them. 

• New Technology. A new decision alternative, often brought about as a result 
of newly available technology, will require only a limited number of decisions 
to be revisited. However, each decision may need to be revisited for each tar-
get system. As such, to support this backwards tracing, there needs to be a  
record of alternatives previously considered and what basis the previous deci-
sion was taken on. 

• Consequential Change. A consequential change, so named because the 
change is necessitated as a consequence of a previous change, requires the 
ability to trace across target systems all decisions made that affected a given, 
budgeted requirement. As such, there needs to be a record of which require-
ments are affected by which selection alternatives, to allow the analyst to 
search through the system to find an acceptable change to trade-off against the 
previous, necessitating change. 

• User Requirements Change. A user requirement change can potentially 
affect any or all target systems, or may necessitate a change to a static (i.e. 
identical in all targets) component of the system. Therefore, as with user re-
quirement changes to static systems, the impact of this type of change varies 
from case to case. 
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From the range of traceability requirements above we can conclude that for deci-
sions to be re-visited and re-evaluated it is necessary to record all of the alternatives 
considered, along with the rationale behind the selection made. Each alternative re-
quires assumptions that impact on the system's competing requirements to be re-
corded, along with the presumed impact itself. The relative importance of the system's 
competing requirements in this domain drives per-target selection decisions, and 
should be recorded along with the environmental assumptions that underpin the re-
prioritisation. 

5   Recording Traceability Information 

In our earlier work [3] we argue that DAS development should commence with an 
early goal modelling phase that allows the analyst to reason about the environment, 
the goals that the actors within that environment have and the softgoals that constrain 
the quality with which the goals can be satisfied. We use the i* modelling language 
[12] in our LoREM [16] method for developing the requirements for DASs since i* is 
well matched to these aims. 

There are two types of i* model: the Strategic Dependency (SD) and Strategic Ra-
tionale (SR) models. The SD model is intended to identify the goals and softgoals in 
complex, multi-agent systems and the dependencies between agents engaged in at-
tempting to satisfy the system's goals and softgoals. The SR model is intended to ex-
plore the available alternatives for satisfying each agent’s goals and softgoals. The SR 
models offer a useful means of reasoning about trade-offs, primarily in terms of the 
extent to which the various solution alternatives satisfy the softgoals. As the “ration-
ale” in SR suggests, SR models serve to record the rationale for decisions. Hence, i* 
can be thought of as not only a modelling technique, but also as a means for tracing 
the motivation for requirements. It is this feature that we propose to exploit here.  

However, although an i* SR model allows us to infer an actor's basis for making a 
decision by examining the decision's impact on system goals, the conveyed informa-
tion on impacts is limited, and understanding complex decisions that balance conflict-
ing goals, such as most adaptation decisions, is difficult. The NFR Framework [17] to 
which i* is related includes a mechanism for recording beliefs and assumptions, re-
ferred to as claims. A claim can be used to support a decision in two ways: attached to 
a node on an NFR model, it represents a comment about an alternative, which may 
influence its selection; attached to a link, it represents a comment on the importance 
(not the magnitude) of the impact. By adding claims to i* SR diagrams, it is possible to 
convey similar information, allowing decision rationale to be inferred more effectively. 

A claim may be used to explain a decision alternative's negative impact on the sys-
tem softgoal “minimise running costs” by claiming that this alternative “requires an 
additional operator for monitoring”. On a standard SR diagram, by contrast, only the 
negative impact itself would be recorded, with the rationale merely implicit and thus 
potentially inexplicable to a developer tasked with evolving the system. A claim could 
also be used to “de-prioritise” a high magnitude impact. For example encrypting an 
intranet site may significantly hinder scalability, but still be deemed necessary for 
security, despite the positive impact on the security goal being weaker. 
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In most instances, it is possible to record a decision justification using a claim in 
two ways. The first is to invalidate a selected candidate's negative impact(s) by claim-
ing they are insignificant or unavoidable, or to promote an alternative's  claiming 
them too costly. The second is to promote a candidate's positive impact(s) by claiming 
them necessary, or to invalidate an alternative's claiming them needless. Although 
both are equivalent when revisiting decisions later, and those with scalability con-
cerns may wish to record the rationale using the fewest additional entities, we prefer 
to record whichever way is closest to the rationale actually used. Figure 1 shows an 
example of an NFR claim being used to justify a decision using the first method: 
promoting the rejected alternative's negative impacts. The selected alternative is col-
oured white for clarity. 

 

Fig. 1. NFR claim justifying selection of a component negatively impacting Energy Efficiency 

In this example, the DAS under analysis is a wireless sensor network and one of its 
goals is to “Transmit data”. This has spurred the need to select a wireless communica-
tion standard and two alternatives have been identified, modelled as: Use Bluetooth 
and Use WiFi (IEEE 802.11). When alternatives such as these exist, reasoning about 
which one to select is aided by considering their impact on softgoals. In Figure 1, two 
softgoals have to be satisfied: “Energy efficiency” and “Fault tolerance”. These two 
softgoals are imperfectly compatible, thus spurring the kind of high-level trade-off 
analysis that i* is so useful for.  

The relatively short-range Bluetooth solution is energy efficient but its ability to 
tolerate a node failure is constrained: since if data is routed via nodes A and B, and 
node B fails, the next closest node may be too remote to establish a connection with 
A. The WiFi alternative, by contrast, endows the nodes with greater communication 
range at the cost of (relatively) high power consumption. These relative strengths and 
weaknesses are captured crudely by the “helps” and “hurts” contribution links be-
tween the alternative solutions and the softgoals. It is these contribution links that we 
propose should be annotated with claims. 

As the environment cycles through its set of possible domains, the DAS needs to 
adapt to the appropriate target system. Analysis of the environment shows that much 
of the time, the DAS will operate in a benign domain in which the risk of node failure 
is low. However, another domain exists, for which the target system is labeled “S2”, 
where the risk of node-failure is significant. A claim attached to the contribution link 
between the “Use Bluetooth” task and the “Fault tolerance” softgoal records the ra-
tionale for why the extent to which selecting Bluetooth as the communication stan-
dard hurts fault tolerance makes its selection unacceptable for S2.  
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Note that this is different from using fine-grained contribution links (Make, Break, 
Some+, ++, etc.) because although defining impact magnitude, the weight (impor-
tance) of the contribution link is context- (i.e. domain/target system) dependent. Nor 
are claims the same as i* “beliefs” which represent assumptions made by an actor, 
with no presumption of truthfulness by the analyst. In the next section we expand 
upon the wireless sensor network example. 

6   Case Study 

GridStix [19] is a DAS built to perform flood monitoring and prediction, and is de-
ployed on the River Ribble in North West England. It takes the form of an intelligent 
wireless sensor network, with multiple nodes measuring river depth and flow rate 
using a variety of sensors, including the analysis of images taken with an on-board 
digital camera. The nodes have processing capability and memory. This allows proc-
essing of the data and execution of the predictive models of the river’s behaviour to 
be performed on site with the system acting as a lightweight grid. However, the nodes 
are resource-constrained and some tasks are best performed by distributing computa-
tion among the nodes. Distributing computation has a cost in terms of the power con-
sumed by inter-node communication, however. This is a serious issue since GridStix’s 
location is remote and power has to be provided by batteries and solar panels, which 
provide only limited power.  

Domain experts identified three distinct environmental domains that GridStix 
needs to operate in. In the “quiescent” domain, the river has a low depth and flows 
relatively slowly. In the “high flow” domain, the river flows faster, but is still at a  
relatively low depth, this can presage the rapid onset of the third domain “flood”, 
where the river depth has started to increase, and there is imminent danger of flood-
ing, which poses a danger to both local residents and the system. 

 

Fig. 2. Models of GridStix configured for High Flow (S2) and Flood  (S3) domains 

GridStix's key softgoals are “Energy efficiency” to maximise battery life, “Predic-
tion Accuracy” to provide timely and accurate flood warnings, and "Fault Tolerance" 
for survivability. The system is built upon the Gridkit middleware [14] which allows 
software components to be substituted at runtime. Our practice is to develop a sepa-
rate SR diagram for each target system. Figure 2 shows part of those for target system 
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S2, which operates in the high flow domain, and S3 which operates in the flood do-
main. The actual, deployed system varies a wider set of individual components dy-
namically, but their inclusion would increase the models' complexity for little or no 
illustrative benefit. 

The S2 and S3 SR diagrams illustrate which decisions were reached for each target 
system. Notice that the only difference between S2 and S3 is that in S3, the task “Use 
FH topology” substitutes for “Use SP topology” in S2. SP and FH represent spanning 
tree algorithms used to communicate data among the nodes in the network: shortest 
path and fewest hop, respectively. The characteristics of the spanning tree algorithms 
are different and this is reflected by their respective contribution links to the Fault 
tolerance and Energy efficiency softgoals. 

From the contribution links from the two spanning tree tasks in S2 and S3, it is 
possible to infer that the “Energy efficiency” softgoal was de-prioritised between S2 
and S3. It is not possible, however, to revisit the decisions in light of new information 
or some other change, given that the alternatives considered are not documented, and 
that the only justification for the decision recorded is that: “This alternative helps the 
Prediction Accuracy softgoal, which must have been prized more highly than Energy 
Efficiency.” The real rationale for the choice of spanning tree algorithm has been lost, 
viz in the high flow domain the risk of immersion or water-borne debris destroying a 
node is slight, so the need to conserve energy in case the situation worsens takes pri-
ority. The relatively energy-efficient shortest path algorithm is therefore the better 
choice. In the flood domain, however, node damage is a real risk and the relatively 
power-hungry but resilient fewest hop algorithm is used to favour Fault tolerance 
over Energy efficiency. 

 

Fig. 3. Augmented model of GridStix in the High Flow (S2) domain 
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Although the limited traceability available from Figure 2 is far better than nothing, 
dealing with numerous, frequent specification changes and having to adjust several 
target's specifications using only this information is a bleak prospect. Recording the 
rejected alternatives and a small amount of additional information using NFR claims 
could make these changes far more manageable. Figures 3 and 4 show the same two 
models, with this extra information recorded. 

  

Fig. 4. Augmented model of GridStix in the Flood (S3) domain 

The additional information shown in Figures 3 & 4 allows rejected alternatives to 
be re-examined if necessary with a richer (although still incomplete) understanding of 
the previous decision's basis. We believe that the information recorded in Figures 3 & 
4 is the minimum required to allow per-target system decisions to be revisited. 

In section 3, we identified five distinct classes of change that a DAS' specification 
may need to be adjusted for. We now discuss how recording additional traceability 
information allows some of these types of changes to be carried out more easily. 

Environmental Change. The first type of change identified was Environmental 
change. This could take the form of a new environmental constraint, an adjustment to 
domain boundaries, or an entire domain being introduced, eliminated, or  merged with 
another. We illustrate the new domain scenario, by introducing a fourth domain to the 
GridStix system. This fourth domain, blockage occurs when a natural or man-made 
obstruction hinders the flow of the river downstream from the GridStix nodes.  

Although this fourth domain does not necessarily pose a danger to local residents 
and should not trigger a flood alert, there is a significant risk of nodes becoming sub-
merged and quickly failing. This makes the more power efficient shortest path (SP) 
networking algorithm and Bluetooth communication risky choices. Furthermore, if 
the blockage is removed (or breached) suddenly, the river's behaviour could be very 
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difficult to predict without data downstream of the blockage. Therefore, it would be 
desirable for the system to report this condition to the Environment Agency, who 
would typically seek to remove occluding objects maintaining the river's regular flow. 
The blockage domain is characterised by a high river depth and low flow rate. It could 
be argued that the new domain and the requirement to report it are two separate 
changes (one environmental change and one user requirement change), but we have 
modelled both together for brevity. Figure 5 shows the SR model for the target sys-
tem, S4, for the blockage domain. 

 

Fig. 5. Augmented model of GridStix configured for the blockage (S4) domain 

The decisions taken for the Blockage (S4) domain closely mirror those taken for 
the Flood (S3) domain, with both Bluetooth and Shortest Path networking rejected on 
the grounds that they each compromise fault tolerance unacceptably, and that there is 
a real risk of node failure in this domain. Unlike the Flood (S3) domain, the chances 
of a sudden increase in flow rate or depth are remote, and the slower, more power 
efficient single node image processing algorithm can be used to save power. 

Broken Assumption. The second class of change identified was broken assumption. 
This can happen as understanding of the operating environment improves, or as knowl-
edge of available components becomes more complete. Dealing with this type of change 
involves tracing all the decisions made based on the assumption, and revisiting them.  

To illustrate this type of change, we have modified our model of the Flood (S3) 
domain, replacing the assumption “Single node image processing is not accurate 
enough for S3” with the inverse. In this instance, changes are confined to this model, 
although this will not always be the case. In fact, only one decision is reached on the 
basis of this assumption, and Figure 6 shows single node image processing being used 
instead, along with the replaced assumption. 



70 K. Welsh and P. Sawyer 

  

Fig. 6. Augmented model of GridStix in the Flood (S3) domain after a broken assumption 

 

Fig 7. Augmented model of GridStix in  High Flow (S2) domain, with new decision alternative 
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This class of change is particularly amenable to analysis in a requirements man-
agement tool, providing the tool has a record of decisions reliant on the now false 
assumption. By automating the location of affected decisions, the overhead of dealing 
with this class of change will be decreased, particularly in larger systems. 

New Technology. The third class of change identified was a new technology that 
becomes available for use. This may introduce a brand new decision to be taken for 
each domain, or add a new alternative to a decision already taken. It is this second 
variant that we have chosen to illustrate in Figure 7, which shows the prediction 
model decision after being re-taken with a newly available alternative. 

Although Figure 7 shows just the High Flow domain, the new alternative would 
need to be added to each diagram, creating a significant overhead in systems with 
many domains.  The new/changed decision in each needs to be re-examined and re-
made in light of the new alternative, which may be selected in some, all or none of the 
target systems. In this example and domain, the extra accuracy offered by the new 
image processing method was deemed necessary and its negative impact on energy 
efficiency tolerated on the basis of this claimed need. 

7   Conclusion 

In this paper we have argued that, far from removing the need for off-line adaptation, 
DASs are inherently susceptible to the need to adapt in ways that are beyond the 
scope of their (necessarily limited) self-adaptive capabilities, which are limited in 
scope at design time. In practical terms, to give a DAS usefully long service life, it is 
likely to need to be maintained by human developers to correct defects and to take 
advantage of new knowledge and new capabilities. As such, a DAS' requirements 
specification needs to be as amenable to change as the system itself. 

We have classified some of the types of change that a DAS is subject to and ar-
gued that some are special to DASs. From this analysis we have identified a need 
to trace how these change types impact on the requirements. To evaluate this, we 
have applied three of the types of identified change (Environmental Change, Bro-
ken Assumption and New Technology) to a case study we have used in our earlier 
work [2], [3], [16]. In this earlier work we developed a process for analysing DASs 
based on goal modelling using i*. We have therefore proposed recording rejected 
decision alternatives alongside the accepted option in i* Strategic Rationale mod-
els, which would previously have shown only the selected alternative. We have 
also proposed extending i* with the notion of claims which we have borrowed 
from the related NFR framework.  

Claims permit us to annotate the contribution links used in i* Strategic Ration-
ale models with the rationale underpinning a decision, explaining how it was 
reached in terms of the softgoals affected. The annotation also makes explicit the 
re-prioritisation of softgoals between domains, which previously had to be inferred 
by comparing several target system's models and examining differences in contri-
bution links. 



72 K. Welsh and P. Sawyer 

Ultimately, we envisage a target system's decision alternatives, their presumed im-
pact on system softgoals, the selected option and the rationale underpinning the selec-
tion decision itself (recorded as claims) being mapped into a conventional tracing tool 
suck as DOORS [18]. Such a tool would allow the now-possible tracing to be auto-
mated, bringing greater benefit in terms of efficiency with scale. 
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