
B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 198–203, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

When to Adapt? Identification of Problem Domains for 
Adaptive Systems 

Kristopher Welsh and Pete Sawyer 

Lancaster University, Computing Dept., Infolab21  LA1 4WA Lancaster, UK 
{k.welsh,p.sawyer}@lancs.ac.uk 

Abstract. Dynamically adaptive systems (DASs) change behaviour at run-time 
to operate in volatile environments. As we learn how best to design and build 
systems with greater autonomy, we must also consider when to do so. Thus far, 
DASs have tended to showcase the benefits of adaptation infrastructures with 
little understanding of what characterizes the problem domains that require run-
time adaptation. This position paper posits that context-dependent variation in 
the acceptable trade-offs between non-functional requirements is a key indicator 
of problems that require dynamically adaptive solutions. 

Keywords: Adaptive systems, non-functional requirements. 

1   Introduction 

Kephart and Chess [1] identified the move to autonomic computing as a grand 
challenge to the software engineering community. They argue that systems able to 
monitor, (re)configure, (re)construct, heal and tune themselves at run-time, are needed 
to mitigate the ever increasing size and complexity of computing systems; which are 
expected to operate in ever less predictable and stable environments. Although such 
systems remain out of reach today, important steps toward them are being taken by 
the research community with self-managed, or dynamically adaptive systems (DASs). 
A DAS alters its behaviour or composition in response to changes in its environment. 

All software systems have to cope with changes in their environment, but usually 
the environment changes slowly enough for adaptation to be performed off-line. Web 
browsers, for example, need to adapt to cope with new content types and protocols 
with the development of new versions that can be installed as updates on users’ 
computers. Increasingly, however, systems are being conceived that need to adapt at 
run-time. For example, applications at the “wireless edge” of the Internet, must adapt 
to the fluctuating availability of services as users move between areas covered by 
different networks. Other examples include systems adapting to cope with different 
user needs [2], new network topologies [3][4], and radical change in physical 
environments [5]. 

There are two common types of adaptation: parametric and architectural [6]. 
Parametric adaptation involves building adaptive capabilities into code on a per-
application basis, radically increasing complexity and making DASs costly to build 
and maintain. Architectural adaptation, by contrast, uses an adaptive infrastructure 



 When to Adapt? Identification of Problem Domains for Adaptive Systems 199 

which typically effects adaptation by component substitution without suspending 
execution [7][8]. Adaptive complexity is partitioned to a reusable and configurable 
adaptive infrastructure, easing the maintenance of applications that use it. Dynamic 
adaptation is a technology that is still maturing and many of the DASs reported in the 
literature have been developed to showcase the capabilities of particular adaptation 
infrastructures.  

Although adaptive infrastructures provide a mechanism for easing implementation 
complexity at the implementation level, the complexity inherent in the problems for 
which DASs provide a solution remains a challenge. As the enabling technology 
continues to mature, we will need to improve our understanding of how to analyse, 
specify and design DASs, so that we can cope with the conceptual complexity posed 
by volatile environments. At the requirements level, Berry et. al. [9] have identified 
four levels of RE needed for DASs, which has been used as the basis for subsequent 
work on goal-driven analysis of DASs [10][11], along with other approaches 
investigating their requirements: e.g. [12]. In most cases, the RE for DASs start with 
an assumption that the problem under analysis requires a DAS as the solution, and 
that therefore the need for dynamic adaptation is somehow obvious from the outset. 
There may well be families of problems where this will be true, but it may not always 
be clear. Such ambiguity risks over-engineering systems for which dynamic 
adaptation is not, in fact, a requirement. Similarly, failure to recognize the presence of 
such a requirement early in a project may result in cost underestimation or worse. 

In this position paper, we posit that a problem that requires a DAS will exhibit 
identifiable characteristics that if not present, strongly indicate that a conventional, 
static system will provide an adequate solution. If our hypothesis holds true, it should 
act as a litmus test usable for analysts during the early-phases of RE. 

2   Volatile Problem Domains, Adaptive Requirements  

For our purposes here, we consider the requirement to adapt dynamically to be 
imposed by the environment in which the system must operate. In general, we exclude 
systems that use adaptation as a defensive strategy to cope with design or 
implementation failures, perhaps by adopting a ‘limp-home’ mode on detection of a 
failed component. An exception to this rule is where the system is designed to cope 
with failure conditions that have their root in a ‘failure’ of the analysis process to 
anticipate possible states of the environment. In our terms, dynamic adaptation is a 
legitimate mitigating strategy when the analyst recognizes that their model of the 
environment is incomplete. For example, there may unknowable properties of the 
atmosphere of Mars that the designers of a probe nevertheless need to try to cope 
with.  

Systems that must cope with unknowable environments are at the extreme end of a 
spectrum of DASs. More common is the situation where the environment is volatile 
but understood sufficiently well to allow the analyst to anticipate how it will change. 
Here, the approach advocated by Berry et al [9] is to characterize the environment as 
a set of discrete stable domains that it can transition between. A DAS can then be 
conceptualized to comprise a set of target systems, each designed to operate within a 
domain. The analyst’s job is then to specify each target system and the adaptation 



200 K. Welsh and P. Sawyer 

scenarios [10][11][13] that specify when the system adapts from one target system to 
another. 

The question we seek to answer is how can a requirement for dynamic adaptation 
be identified early in the development process? This can be re-phrased as what 
features of the problem domain indicate that a DAS will provide an appropriate 
solution? There are two non-exclusive classes of environment which imply a need for 
dynamic adaptability. The first class is where the requirements that are consequent on 
the environment change on a time-scale likely to be experienced by the running 
system. For example, a mobile device may need the ability to adapt in order to take 
advantage of new services as they come in range and become available. The second 
class is where the trade-offs between non-functional requirements (NFRs) varies with 
context. Here, the set of requirements may be constant, but what constitutes their 
satisfaction is not. We hypothesize that the second class is the more common but also 
more subtle and harder to recognise. For example, in the case of the mobile device 
above, the choice of service to use may be constrained by a preference for certain 
service providers that may not always be available.  

In the next section we examine two examples of DASs to illustrate that NFR trade-
offs are a common feature of each. By so doing they provide evidence in support of 
our hypothesis. 

3   DAS Exemplars 

Our first example DAS is an image viewer that adapts to usage patterns and available 
resources. The system, presented in [4] loads images either from the local file system 
or a remote URL, and caches images to reduce latency when there is sufficient 
memory available. Although no requirements process is reported for the system, it is 
trivial to elicit the two primary non-functional requirements that the adaptation 
addresses: minimise latency when switching between images and minimise memory 
usage to avoid swapping. The time taken to load images from local and remote file 
systems is variable, as is the amount of memory available. 

During normal operation, the “minimise memory usage” NFR is given priority, 
with the system performing no caching. However, when image loading and decoding 
time exceeds a given threshold, the system adds a caching component, satisficing the 
“minimise latency” NFR. The viewer also monitors free memory, disabling the cache 
when scarce and using parametric adaptation to adjust cache size during operation. 

Parametric adaptation is also used to switch cache replacement policy: selecting a 
Most Recently Used policy if images are accessed sequentially, and a Least Recently 
Used policy otherwise. This essentially tunes the system to best satisfy the “minimise 
latency” NFR according to usage. They key point is that what constitutes satisfaction of 
the NFRs varies with the operating environment, thus making adaptation advantageous.  

Our second example is an adaptive flood prediction and monitoring system 
deployed on the banks of the river Ribble in North West England [5]. GridStix is an 
intelligent wireless sensor network that monitors the river and analyses data gathered 
by multiple sensor nodes. The sensor nodes have enough processing power to process 
the data co-operatively by acting as a lightweight computational grid, obviating the 
need to transmit raw water depth and flow rate data off-site for processing. This is 
significant because GridStix’s remote location means that only low-bandwidth 



 When to Adapt? Identification of Problem Domains for Adaptive Systems 201 

cellular radio networks are available for long-range data transmission. The remote 
location also means that GridStix is dependent on batteries and solar panels for its 
power supply. Another feature mandated for GridStix is the use of digital camera 
images for flow sensing. Digital cameras are inexpensive and robust but produce large 
volumes of data. The ability to process this data locally is a precondition for the use of 
digicams. 

GridStix’s environment has been characterized by domain experts according to 
three distinct domains. In the first the river is quiescent. In the second domain, high 
flow, the river flows rapidly but still without significant depth increase. A high flow 
rate can presage the arrival of a pulse of water that would result in the third domain, 
flood, where both the flow rate and the depth are high. GridStix's key NFRs are 
"energy efficiency" to maximise battery life, "accuracy" to provide timely and 
accurate flood warnings, and "fault tolerance" to aid survivability. Crucially, the 
relative importance of the NFRs varies with the domain. In the quiescent domain, 
energy efficiency has the priority. With no flood event imminent, the key requirement 
is to keep the system in readiness, sampling data relatively infrequently. In the high 
flow domain, the possibility of the onset of a flood event means that accuracy of 
prediction is relatively more important than it is in the quiescent domain. This means 
that sampling needs to happen more frequently and the data needs to be processed 
more quickly. In the flood domain, GridStix still needs to provide accurate predictions 
but the ability to survive node loss due to submersion or water-borne debris promotes 
the relative importance of fault-tolerance. 

GridStix needs to adapt to the three domains to ensure the appropriate trade-offs 
between the three NFRs. A reflective middleware platform supports this by, for 
example, substituting components for different spanning tree algorithms that enable 
the sensor nodes to communicate. A relatively energy-efficient shortest-path 
algorithm is used for the quiescent and high flow domains. A more power-hungry but 
resilient fewest-hop algorithm is used for the flood domain.  

Many flood warning systems use sensor networks. Most of these are ‘dumb’, with 
no grid-like computational capability. This precludes, for example the use of 
inexpensive digital camera imaging for flow sensing since the volumes of data are too 
high to transmit off-site for processing over low-bandwidth communication networks. 
Nevertheless, such systems are subject to many of the same NFRs as GridStix. 
Satisfaction of both the fault-tolerance and energy-efficiency requirements is 
significantly inhibited, however, if the systems are unable to adapt as their river 
environments change. Hence, although flood warning systems need not necessarily be 
DASs, the peculiar combination of NFRs to which they are subject make a strong case 
for them being implemented as DASs. The same argument can be made in many other 
domains where dynamic adaptability offers better solutions than have hitherto been 
available. 

Both our exemplars exhibit environment volatility. The image processing system 
has to cope with network latency, while the flood warning system has to cope with a 
river subject to frequent heavy rainfall. In both cases, the key goals of the system 
remain the same irrespective of the environment; to render images and to predict 
flooding, respectively. In both cases, however, the acceptable trade off between their 
NFRs varies. We hypothesise that this NFR trade-off characteristic is a key signifier 
that dynamic adaptation is needed.  



202 K. Welsh and P. Sawyer 

  
Fig. 1. Models of GridStix configured for High Flow (S2) and Flood (S3) domains 

In [10] we have proposed the use of i* [14] for making the trade-offs between 
NFRs explicit.  Figure 1 illustrates this by showing developments of two models of 
how GridStix is configured for the High Flow and Flood domains. The key features 
are the three softgoals representing the NFRs on the right of each part of the figure. 
Notice how Fault tolerance and Energy efficiency are either helped or hurt by 
substituting the task Provide FH (fewest hop) Topology for the Provide SP (shortest 
path) Topology as the system adapts from High Flow to Flood. In our approach, 
which follows closely the three levels of RE for DASs proposed by Berry et al. [9], 
the models in Figure 1 are developed following development of a strategic depen-
dency graph that models in which the overall goals and softgoals are identified. 
Subsequent models are developed to specify the adaptation scenarios and to inform 
the selection of the adaptive infrastructure.  

4   Conclusion 

Dynamic adaptation allows us to create systems able to operate in environments that 
have hitherto posed daunting problems for system developers. As ubiquitous 
computing begins to demand greater context-awareness and flexibility we will 
encounter problem domains requiring dynamic adaptation increasingly often. Since 
adaptive systems are fundamentally more complex than static systems, however, 
being able to identify such problems early on in the RE process is important.  

There currently exists no systematic means to recognize the characteristics of a 
problem that requires a dynamically adaptive solution. Great advances have been 
made in the development of adaptive infrastructures but the RE community has been 
slow to respond to the challenges posed by the kinds of problem that adaptive 
infrastructures are designed to support. The RE community is now beginning to show 
some awareness, as evidenced by, for example [2] [9] [11].  

Our aim in writing this paper has been to argue that a key capability of RE is early 
recognition of whether a problem demands a dynamically adaptive solution. We have 
not shown that this can be done in all cases. Rather, we have posited the idea that 
where analysis of a problem identifies a set of NFRs whose relative priorities change 
according to the state of the environment, a capability for dynamic adaptability may  
 



 When to Adapt? Identification of Problem Domains for Adaptive Systems 203 

be a key requirement of the solution. Two exemplars have illustrated our ideas. We 
now need to test our hypothesis in a wider range of applications to see whether our 
hypothesis holds. If it does hold, then we will have a useful litmus test of one aspect 
of complexity that impacts significantly on system development.  

References 

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1) 
(2003) 

2. Fickas, S.: Clinical requirements engineering. In: Proceedings of the 27th International 
Conference on Software engineering (2005) 

3. Cerpa, A., Estrin, D.: ASCENT: adaptive self-configuring sensor networks topologies. 
Transactions on Mobile Computing 3(3) (2004) 

4. David, P.C., Ledoux, T.: Towards a Framework for Self-Adaptive Component-Based 
Applications. In: Stefani, J.-B., Demeure, I., Hagimont, D. (eds.) DAIS 2003. LNCS, 
vol. 2893, pp. 1–14. Springer, Heidelberg (2003) 

5. Hughes, D., Greenwood, P., Coulson, G., Blair, G.: GridStix: supporting flood prediction 
using embedded hardware and next generation grid middleware. World of Wireless, 
Mobile and Multimedia Networks (2006) 

6. Mckinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive 
software. IEEE Computer 37(7) (2004) 

7. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. Future of 
Software Engineering (2007) 

8. Karsai, G., Ledeczi, A., Sztipanovits, J., Peceli, G., Simon, G.,, Kovacshazy, T.: An 
Approach to Self-adaptive Software Based on Supervisory Control. In: Laddaga, R., 
Shrobe, H.E., Robertson, P. (eds.) IWSAS 2001. LNCS, vol. 2614, pp. 24–38. Springer, 
Heidelberg (2003) 

9. Berry, D.M., Cheng, B.H., Zhang, J.: The four levels of requirements engineering for and 
in dynamic adaptive systems. In: Proc. 11th International Workshop on Requirements 
Engineering: Foundation for Software Quality, Porto, Portugal (2005) 

10. Sawyer, P., Bencomo, N., Hughes, D., Grace, P., Goldsby, H., Cheng, B.: Visualizing the 
Analysis of Dynamically Adaptive Systems Using i* and DSLs. In: Proc. 2nd Intl. 
Workshop on Requirements Engineering Visualization, Delhi, India (2007) 

11. Goldsby, H., Cheng, B.H.C.: Goal-Oriented Modeling of Requirements Engineering for 
Dynamically Adaptive System. In: Proc. 14th IEEE International Requirements 
Engineering Conference, Minneapolis, USA (2006) 

12. Sora, I., Cretu, V., Verbaeten, P., Berbers, Y.: Managing Variability of Self-customizable 
Systems through Composable Components. Software Process: Improvement and 
Practice 10(1) (2005) 

13. Efstratiou, C., Cheverst, K., Davies, N., Friday, A.: An Architecture for the Effective 
Support of Adaptive Context-Aware Applications. In: Proc. Second International 
Conference on Mobile Data Management, Hong Kong (2001) 

14. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements 
Engineering. In: 3rd IEEE Int. Symp. on Requirements Engineering (RE 1997), 
Washington D.C., USA (1997) 

 


	When to Adapt? Identification of Problem Domains for Adaptive Systems
	Introduction
	Volatile Problem Domains, Adaptive Requirements
	DAS Exemplars
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




