
Towards Requirements Aware Systems: Run-time Resolution of Design-time
Assumptions

Kristopher Welsh, Pete Sawyer
School of Computing & Communications

InfoLab21, Lancaster University
Lancaster, UK

k.welsh@lancaster.ac.uk, sawyer@comp.lancs.ac.uk

Nelly Bencomo
INRIA Paris - Rocquencourt

Le Chesnay, Franceaine de Voluceau, B.P.105
78153 Le Chesnay, France

nelly@acm.org

Abstract—In earlier work we proposed the idea of
requirements-aware systems that could introspect about the
extent to which their goals were being satisfied at runtime.
When combined with requirements monitoring and self adap-
tive capabilities, requirements awareness should help optimize
goal satisfaction even in the presence of changing run-time
context. In this paper we describe initial progress towards the
realization of requirements aware systems with REAssuRE.
REAssuRE focuses on explicit representation of assumptions
made at design time. When such assumptions are shown not to
hold, REAssuRE can trigger system adaptations to alternative
goal realization strategies.

Keywords-requirements awareness; self adaptive systems;
goals; claims;

I. INTRODUCTION

In [1] previous work, we have proposed the LoREM goal-
driven method for deriving requirements for self-adaptive
systems [2]. In this paper we extend this work to derive the
REAssuRE method (REcording of Assumtions in RE) to
support reasoning over uncertainty. REAssuRE extends the
i* [3] Strategic Rationale (SR) goal models used by LoREM
to include claims. In REAssuRE, claims record the rationale
for selection between alternative goal realization strategies.

Self-adaptation is often used to mitigate an inability to
accurately predict the range of environmental contexts that
a system will encounter at run-time. The specification and
design of self adaptive systems is thus often subject to uncer-
tainty, forcing the developer to make assumptions in order
to identify and define the means to achieve the system’s
goals. Using claims, an assumption made in selecting a goal
realization strategy can be made explicit. In REAssuRE, if
data collected by monitoring provides evidence that such an
assumption is false, the effects can be propagated to the goal
models used to specify the goal realization strategy, which
can then be automatically re-evaluated. This may trigger the
system to adapt by binding to an alternative means of goal
realization.

The primary contribution of this paper is to demonstrate
the feasibility of maintaining goal models at runtime and
their utility for guiding principled adaptations to contexts

encountered at runtime that were imperfectly understood
at design time. In succeeding sections we will describe
REAssuRE in more detail and describe its use in an adaptive
flood warning system, before briefly reviewing related work
and drawing final conclusions.

II. REASSURE

Goal modeling enables the intention (goals) of both the
computational and the non-computational agents in a domain
to be modeled. The partitioning of goal models by agent
in i* [3] is a good match for the approach recommended
by [4], and followed by LoREM [1], in which a volatile
environmental context can be conceptualized as a finite set
of discrete environmental contexts.

A further advantage of goal-oriented RE, is the ability
to model non-functional requirements (NFRs) directly as
softgoals and to represent the impact of different solution
strategies on softgoal satisficement. This feature is exploited
by LoREM, where for all contexts, the system is considered
to have a common set of goals and softgoals. However, goal
realization is specified on a per-context basis, and tailored
to what is the optimal trade-off among the softgoals in each
context. For example, in a sensor network whose goal was to
gather data about a volcano, conserving battery power might
be prioritized during quiescent periods, but frequent data
collection might be the priority when an eruption appeared
imminent.

In i*, reasoning about the best goal satisfaction strategy
is informed by the values that the analyst gives to the
contribution links that record the expected effect of each
realization strategy on the softgoals. Realization strategies
are modeled as tasks. In its simplest form, a task can make,
help, hurt, break or have a neutral effect on satisficement
of a softgoal. However, where uncertainty exists, perhaps
because of imperfect knowledge about the environment, the
effect of different goal realization strategies on the softgoals
may be uncertain, forcing the analyst to make assumptions.

In REAssuRE, we extend the i* strategic rationale (SR)
models used in LoREM with claims, a concept borrowed
from the NFR framework [5]. Claims are attached to softgoal



contribution links and are used to record the rationale for a
choice of goal realization strategy when there is uncertainty
about the optimum choice. Claims serve as markers for
uncertainty, helping the analyst evaluate the consequences
of assumptions proving false.

Claims thus serve a static purpose of making the assump-
tions that may underly key design decisions implicit and
traceable [6]. However, claims also have dynamic utility.
By maintaining run-time representations of the goal models
and monitoring claims via context variables, the effects of a
claim proving false can be propagated to the goal model and
the merits of the competing goal realization strategies can
be dynamically reevaluated. Thus, a system may mitigate
the corresponding mistaken assumption by self-adapting to
a configuration that represents a better solution strategy.

The semantics of claim propagation are simple. The
impact of the truth of claims on the contribution links to
which they attach is boolean; they either make or break
them resulting in make, neutral or break contributions:

claim = break ⇒ c′ = neutral

claim = make ∧ (c = hurt ∨ c = break) ⇒ c′ = break

claim = make ∧ (c = help ∨ c = make) ⇒ c′ = make

Where c is the value that annotates the contribution link
to which the claims is attached and c’ is the value of the
contribution link when combined with the effect of the claim.
Thus, revising the truth value of a claim can affect the extent
to which a task satisfices a softgoal, and this in turn can
(e.g.) change the task from representing the optimal goal
realization strategy to one that is no longer the best of those
available.

The above makes a number of simplifying assumptions
about the complexity of the i* models used. In particular, we
assume that each alternative solution strategy is represented
by a claim which is in turn modelled as a leaf of the
goal tree. Moreover, for each such claim, its impact on
satisficement of the relevant softgoals is represented by a
contribution link. It is to these contribution links to which
claims may be attached.

Thus, to exploit REAssuRE for run-time reasoning, the
expressiveness of i* goal models is restricted to a con-
strained subset. The payoff of the these constraints is that an
automatic reasoning system can evaluate softgoal satisfice-
ment at runtime which, when coupled with a self-adaptive
capability in the system under design, should help guarantee
adaptation decisions that are principled and taken explicitly
to further the system’s goals.

III. EXAMPLE REASSURE IMPLEMENTATION

We have applied REAssuRE to GridStix [7, 8], an ex-
perimental flood warning system. GridStix was a sensor
network of smart nodes capable of sensing the state of the

river, processing the data and communicating it across the
network. Flow rate and river depth data was used by a
stochastic model which predicted the likelihood of the river
flooding. GridStix acted as a lightweight Grid, capable of
distributing tasks such as the processing of the digital camera
images used for estimating surface river flow.

GridStix has been decomissioned but a simulator has been
constructed that embodies the experience gained and which
allows us to run scenarios and simulate events. System
behaviour is defined by the configuration of components
managed by an adaptive middleware system. Adaptation is
achieved by swapping components in and out, binding them
dynamically.

Run-time reasoning in REAssuRE focuses on identifying
goals that act as variation points (e.g. Transmit Data in Fig
1), each of which may be satisfied by two or more i* tasks
(e.g. Use Bluetooth and Use WiFi in Fig 1) representing
alternative goal realization strategies. Each such task is
mapped onto a particular component configuration.

Figure 1 shows one of the i* goal models developed for
GridStix. It represents the agent S3, which is responsible for
satisfying the goals of GridStix when the stochastic model
indicates that the river is about to flood. The figure shows
that S3’s primary goal is to Predict Flooding, while it
has three softgoals Fault Tolerance, Energy Efficiency and
Prediction Accuracy. All the softgoals are to some extent in
competition. For example, the choice of wireless communi-
cation technology entails a trade-off between Fault Tolerance
and Energy Efficiency. Bluetooth consumes significantly less
energy than Wi-Fi but has a much shorter range. Thus,
if Bluetooth is chosen to satisfice the Energy Efficiency
goal, Fault Tolerance may suffer because, depending on
the physical topology of the network, the failure of a node
is more likely to leave its neighbours isolated and unable
to communicate than would be the case if S3 had been
configured to use Wi-Fi.

S3 represents a situation in which there is a high risk of
nodes failing by submersion or water-borne debris so Fault
Tolerance is prioritized over Energy Efficiency. Similarly,
frequent and accurate data about river flow is required so
Prediction Accuracy is also prioritized over Energy Effi-
ciency. Thus Figure 1 shows that the tasks use Wi-Fi, Use
FH Topology and Multi Node Image Processing are selected
as the goal realization strategies for the variation point
subgoals Transmit Data, Organize Network and Calculate
Flow Rate, respectively.

Each variation point has a claim attached to one of
the tasks’ contribution links providing the rationale for the
choice of goal realization strategy. Thus, for example, SP
too risky for S3 represents an assumption that node failure is
likely to lead to fragmentation of the network if a shortest-
path (SP) spanning tree is selected, rather than the normally
more resilient fewest-hop (FH) spanning tree. The effect of
the claim is to Make the Hurt contribution link between the



Figure 1. GrdiStix SR Model

Use Bluetooth task and the Fault Tolerance. As explained
above, this in turn has the effect of Break-ing the link, so
making the balance of contributions favour the Use WiFi
goal realization strategy. Crucially, however, SP topologies
aren’t always prone to network fragmentation, particularly if
the individual nodes fail only infrequently. This uncertainty
over whether SP will really lead to poor resilience is what
that motivates our making it explicit in the form of a claim.

Claims can derive other claims in a Claim Refinement
Model (Fig 2) in which claims are organized in a hierarchy.
Claims can be AND-ed or OR-ed, allowing the effect of
refuted claims to be propagated down the tree to the bottom-
level claims; the ones used to annotate softgoal contribution
links. Claim refinement allows the derivation of claims to
be made explicit. It also allows high-level claims to be
decomposed to primitive claims that can in turn be mapped
onto context variables that can be readily monitored.

Figure 2. S3 Claim Refinement Model

To date, we have evaluated the performance of REAssuRE
by measuring the network’s life; the time taken for fragmen-
tation of the network to reach a point where no result was
returned in response to the prevailing river conditions. The
results show a consistent improvement in longevity when
Gridstix uses claims than when the assumptions made at
design time are fixed. The improvement is small, however
(typically of the order of a 5% improvement), so further
evaluation will be necessary to determine whether the added
complexity of the run-time model is justified by the improve-
ment in longevity.

IV. RELATED WORK

DeLoach and Miller [9] explore how to maintain a run-
time representation of goals. However, they do not deal
with the run-time representation of softgoals or goal re-
alization strategies. The main utility of their work has
been for understanding what the systems is doing in terms
of goals. No reasoning about partial satisfaction is done.
This contrasts with [10], which formalizes a means for
representing partial goal satisfaction based on KAOS [11].
A contrasting approach to partial goal satisfaction is taken
by RELAX [12]. Although RELAX is not goal-based per-se,
[13] illustrates the use of RELAX, with KAOS goal models,
using obstacle analysis to identify when to RELAX a goal.
[14] propose adaptive goals that are aware of their own
degree of satisfaction during runtime and a means to trigger
adaptation.

All of the above work represents in some way a blurring



of the boundary between design and runtime [15, 16] and
this is a trend that inspires our own work.

V. CONCLUSION

REAssuRE is a technique for making explicit where
uncertainty underpins design decisions in goal models for
self-adaptive systems. Our aim with REAssuRE was to
investigate the feasibility of run-time goal models as a
means to ensure that adaptations are principled and sen-
sitive to changing context. Its application to GridStix has
demonstrated that REAssuRE is able to reason about how
design-time assumptions affect goal realization strategies, as
evidence for or against design-time assumptions is gathered
by claim monitoring. This in turn is used to drive run-
time adaptation between alternative goal realizations as
determined by the balance of softgoal trade-offs.

Our intention with REAssuRE was to test whether main-
taining and reasoning over goal models at runtime was feasi-
ble. The early results are promising. However, there remain
many unanswered research questions about the achievement
of requirements-aware systems. We need to analyze in
detail the results of our initial evaluation and enrich our
set of experimental results. We then need to incrementally
eliminate the i* modeling restrictions that currently apply
to REAssuRE. Ultimately, we will want to propagate the
effects of claim refutation up the goal tree, which will
involve reasoning over goal satisfaction, with an implication
that mitigation of an unsatisfiable goal may require the goal
model to be modified.

At the current time, however, REAssuRE represents a first
step towards maintaining run-time requirements models on
which the system may act. True requirements awareness is
still some way off, but our confidence has increased in it
being achievable.

ACKNOWLEDGMENT

This research is partially supported by EU CON-
NECT project and Marie Curie Fellowship ”Require-
ments@run.time”.

REFERENCES

[1] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes,
and B. H. Cheng, “Goal-based modeling of dynami-
cally adaptive system requirements,” in 15th Annual
IEEE International Conference on the Engineering of
Computer Based Systems (ECBS), 2008.

[2] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and
A. Finkelstein, “Requirements-aware systems: A re-
search agenda for re for self-adaptive systems,” Re-
quirements Engineering, IEEE International Confer-
ence on, vol. 0, pp. 95–103, 2010.

[3] E. S. K. Yu, “Towards modeling and reasoning support
for early-phase requirements engineering,” in Proceed-
ings of the 3rd IEEE International Symposium on
Requirements Engineering (RE97), USA, 1997.

[4] D. Berry, B. Cheng, and J. Zhang, “The four levels of
requirements engineering for and in dynamic adaptive
systems,” in 11th International Workshop on Require-
ments Engineering: Foundation for Software Quality
(REFSQ’05), Porto, Portugal, 2005.

[5] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos,
Non-Functional Requirements in Software Engineer-
ing. Springer, 1999, vol. 5.

[6] K. Welsh and P. Sawyer, “Requirements tracing to
support change in dynamically adaptive systems,” in
REFSQ, 2009.

[7] D. Hughes, P. Greenwood, G. Coulson, G. Blair,
F. Pappenberger, P. Smith, and K. Beven, “Gridstix::
Supporting flood prediction using embedded hardware
and next generation grid middleware,” in 4th Inter-
national Workshop on Mobile Distributed Computing
(MDC’06), Niagara Falls, USA, 2006.

[8] N. Bencomo, P. Grace, C. Flores, D. Hughes, and
G. Blair, “Genie: Supporting the model driven develop-
ment of reflective, component-based adaptive systems,”
in ICSE 2008 - Formal Research Demonstrations
Track, 2008.

[9] S. A. DeLoach and M. Miller, “A goal model for adap-
tive complex systems,” International Journal of Com-
putational Intelligence: Theory and Practice., vol. 5,
no. 2, 2010.

[10] E. Letier and A. van Lamsweerde, “Reasoning about
partial goal satisfaction for requirements and design
engineering,” in Proc. of 12th ACM SIGSOFT In-
ternational Symposium on Foundations of Software
Engineering, 2004, pp. 53–62.

[11] A. van Lamsweerde, Requirements Engineering: From
System Goals to UML Models to Software Specifica-
tions. John Wiley & Sons, 2009.

[12] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng,
and J.-M. Bruel, “Relax: a language to address un-
certainty in self-adaptive systems requirement,” Requir.
Eng., vol. 15, no. 2, pp. 177–196, 2010.

[13] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle,
“Goal-based modeling approach to develop require-
ments for adaptive systems with environmental uncer-
tainty,” in ACM/IEEE 12th International Conference
On Model Driven Engineering Languages And Sys-
tems, MODELS 2009, 2009.

[14] L. Baresi and L. Pasquale, “Fuzzy goals for
requirements-driven adaptatio,” in 18th International
IEEE Requirements Engineering Conference, RE’10,
2010.

[15] L. Baresi and C. Ghezzi, “The disappearing boundary
between development-time and run-time,” in Proceed-
ings of the FSE/SDP workshop on Future of software
engineering research, 2010.

[16] G. Blair, N. Bencomo, and R. B. France, “Models@
run.time,” Computer, vol. 42, no. 10, pp. 22–27, 2009.


