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Abstract—Autonomous systems are increasingly conceived as 
a means to allow operation in changeable or poorly understood 
environments. However, granting a system autonomy over its 
operation removes the ability of the developer to be completely 
sure of the system’s behaviour under all  operating contexts. 
This  combination  of  environmental  and  behavioural 
uncertainty  makes  the  achievement  of  assurance  through 
testing  very  problematic.  This  paper  focuses  on  a  class  of 
system, called an m-DAS, that uses run-time models to drive 
run-time  adaptations  in  changing  environmental  conditions. 
We propose a testing approach which is itself  model-driven, 
using model analysis to significantly reduce the set of test cases 
needed  to  test  for  emergent  behaviour.  Limited  testing 
resources  may  therefore  be  prioritised  for  the  most  likely 
scenarios in which emergent behaviour may be observed.
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INTRODUCTION

Autonomous  computing  is  envisaged  by  many  as 
Computer  Science's  ultimate  challenge.  Systems  that  are 
self-managing,  self-configuring,  self-tuning,  self-repairing 
and  self-maintaining  are  a  staple  of  science-fiction,  but 
complete  autonomy is  still  some  distance  away.  We are, 
however,  starting  to  create  systems  that  posses  a  limited 
ability to perform self-configuration as a means to achieve a 
degree of autonomy [1] [2]. These so called self-adaptive [3], 
or  Dynamically Adaptive Systems (DASs) [4]  represent  an 
important first step on the road to autonomic systems, and 
are the subject of much research effort. [5] [6]

McKinley et al. [7] identified two distinct types of self-
adaptive  behaviour:  parametric  and  compositional. 
Parametric adaptation is achieved by coding several different 
system or component behaviours, switched via some internal 
parameter or flag, that is set according to some pre-defined 
criteria.  This style  of adaptation is suitable for small-scale 
systems that need only to be able to switch between a small 
number of  behaviours,  where  both the behaviours  and the 
circumstances  in  which  each  is  to  be  employed  are  fully 
understood  when  specifying  the  system.  Compositional 
adaptation is achieved by allowing structural elements of the 
system to be combined and recombined at run-time.  Many 
current  state  of-the-art  DASs  [1]  [2]  use  pre-selected 
configurations  of  components,  with  run-time  component 

substitution  taking  place  in  response  to  changes  in  the 
system's operating environment.

Although  several  architectural  approaches  to 
compositional adaptation have been proposed (for example, 
[6], [8] & [9]), it is more common for DASs to utilise some 
form of  adaptive  middleware  (for  example,  [10]  & [11]), 
thus  separating  the  tasks  of  environmental  monitoring, 
component  substitution  and  state  management  from  the 
system's business logic. Such adaptive middleware matches 
component  selections  with  environmental  conditions  in 
accordance  with  adaptation  policies,  which  specify  the 
conditions under which components are substituted.

Recently,  researchers  have  investigated  ways  to 
understand and specify the requirements for a DAS, with a 
consensus emerging that goal-based methods [12] [13] offer 
a useful means to reason about how competing system goals 
are traded-off as the environment changes. There are several 
goal-based modelling approaches for DASs that utilise the 
popular KAOS [14] and i* [15] techniques ([12], [16] and 
[17]  for  example).  However,  despite  the  issue  of  DAS 
verification being highlighted as needing attention [3], there 
has been little work on the issue to date. The work that has 
been  completed  (e.g.  [18])  has  focussed  on  verifying 
business logic after  adaptation, as opposed to our interest: 
verifying that the adaptation itself is desirable, or better still 
optimal. This is a key issue since the dynamic behaviour of 
DASs  represents  an  additional  dimension  of  behavioural 
complexity over conventional, static systems. This additional 
complexity  impacts  on verification  of  a  DAS’s  behaviour 
since it is necessary not only to verify that the DAS operates 
as desired when the environment is in a given state, but that 
the  DAS  adapts  its  behaviour  appropriately  as  the 
environment changes. 

We argue that allowing a system any degree of autonomy 
over  its  operation  removes  a  proportionate  degree  of 
certainty over how the system will behave. This certainty is 
key to delivering assured, dependable systems and can only 
truly  be  achieved  with  complete  knowledge  of  what 
decisions a DAS will make in any given scenario, coupled 
with a full and accurate understanding of the scenarios that it 
will  face.  Unfortunately,  both  of  these  prerequisites  are 
extremely difficult to achieve for a DAS. The very nature of 
the type of environment in which a DAS will prove most 
beneficial is one of complexity and volatility, and devising 
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testing  scenarios  to  cover  every  permutation  of  system 
configurations  and  environmental  properties  is  not  only 
wickedly  complex,  but  exponentially  proportional  to  the 
degree of system autonomy. Essentially, a DAS is likely to 
exhibit emergent behaviour as a result of uncertainty about 
the  environment  in  which  the  DAS  must  operate  and 
uncertainty about how the DAS will respond. Verification of 
a DAS is therefore not only about assuring that the specified 
behaviour  is  delivered,  but,  critically,  also  about  ensuring 
that any emergent behaviour is not damaging. It is this latter 
problem that we are concerned with here.

Of  course,  testing is  not  the only means  of  validating 
software, and in some cases it may be possible to offer an 
acceptable  degree  of  assurance  through  monitoring,  or 
allowing  full  or  partial  human  control  over  adaptation. 
However, such approaches only offer limited assurance, and 
do so at the expense of autonomy. We argue that even partial 
testing  can  offer  a  greater  degree  of  assurance  while  still 
allowing greater freedom in terms of autonomy,

The rest of this paper is organised as follows: Section 2; 
the next section, examines related work in the DAS research 
area, with a particular focus on the model-driven engineering 
of DASs, which this work builds upon. Section 3 proposes a 
new class of DAS which offers a greater degree of autonomy 
than the current state of the art. Section 4 proposes a model-
driven testing technique that allows limited testing resources 
to be directed to best offer assurance for this new class of 
DAS. Section 5 presents a case study to illustrate both the 
class  of  system  described  in  section  3  and  the  testing 
methodology  described  in  section  4,  whilst  section  6 
concludes the paper.

BACKGROUND

Our existing LoREM process [12] offers a requirements 
modelling approach for DASs operating in environments that 
can be partitioned into distinct  domains, with a steady-state 
system, termed a  target  system being devised for  each,  as 
conceptualised in [19]. 

LoREM  is  based  on  the  i*  [15]  framework  which 
supports  reasoning  about  systems  in  terms  of  agents, 
dependencies,  goals  and  softgoals.  Softgoals  are  a 
particularly useful concept since they represent goals that can 
typically be only partially satisfied or satisficed. In practice, 
softgoals  often  take  the  form of  high-level  non-functional 
requirements  (NFRs).  Softgoals  often represent  the foci  of 
decision  points  since  different  solution  strategies  will 
satisfice  different  softgoals  to  varying  degrees.  Hence, 
selection of the ‘best’ solution will typically entail devising 
several  solutions,  comparing  their  softgoal  satisficement 
properties and selecting the one that offers the best trade-off. 
A  strength  of  i*  is  that  it  allows  these  trade-offs  to  be 
reasoned  about  and recorded  explicitly.  This  proves  to be 
particularly  useful  for  a  DAS where  the relative priorities 
assigned to different softgoals may vary depending on which 
domain the environment is in at any given time.

Accordingly,  with LoREM, a separate  target  system is 
specified to operate within each domain of the environment, 
while adaptation from one target  system to another  as the 

environment transitions between domains is specified 
separately for each valid transition. 

In  [20] we  augmented  the  LoREM  i*  models  with 
claims,  a concept which we have borrowed from the NFR 
Framework's  [21] tool-kit.  Claims  can  be  used  to  record 
assumptions about the domain or the behaviour of the DAS 
itself. This is significant because the potential for emergent 
behaviour  is  closely  linked  to  the  validity  of  these 
assumptions. 

As a simple example, Figure 1 models one of two target 
systems for an adaptive image viewer, first described in [22]. 
The  system's  only  adaptive  capability  is  to  introduce  an 
image caching component as the latency encountered when 
loading files increases beyond a set threshold. 

In Figure 1 the circle with the broken line represents the 
target  system  S2 that  operates  in  the  domain  D2:  High 
Latency (not shown). Ellipses represent  goals. In this case, 
S2 needs to satisfy the goal “Display Images”. Hexagons are 
tasks that operationalise goals. Here, the task “Render Image 
Data” satisfies the “Display Images” goal, as depicted by the 
arrow-headed  means-end relationship  arc.  “Render  Image 
Data”  itself  is  decomposed  (as  depicted  by  the  arcs  with 
crossbars) to the task “Decode Data” and the sub-goal “Load 
Data”. “Load Data” is interesting because it can be satisfied 
by  two  alternate  strategies  represented  by  the  tasks  “Use 
Cache” and “Don’t Use Cache”. Both alternatives are shown 
to  have  different  impacts  on  satisficement  of  the  two 
softgoals “Maximise Speed” and “Minimise Memory Usage” 
that are depicted using the softgoal symbol: a lozenge. The 
arcs  from  the  two  alternative  tasks  to  the  softgoals  are 
contribution links and show (e.g.) that if a cache is used, it 
helps satisficement  of  the  “Maximise  Speed”  softgoal  but 
hurts satisficement  of  the  “Minimise  Memory  Usage” 
softgoal. Since both softgoals have one hurts and one helps 
contribution  link  for  either  solution  strategy,  the  choice 
between them is not clear. However,  the cloud attached to 
one of the contribution links is a claim and its effect  is to 
assert  that,  in  the  context  of  domain  D2,  the  “Maximise 
Speed” softgoal should take priority, leading to selection of 
the “Use Cache” solution.

Figure 1. Level 1 Model of Image Viewer's S2 Target System
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In the next section we describe how LoREM models can 
be consulted and modified at  run-time. This helps make a 
DAS tolerant of unanticipated environmental conditions, but 
introduces  the  likelihood  of  emergent  behaviour  which 
represents a risk to the integrity of the system. Testing for 
such emergent  behaviour is  important  but  potentially very 
costly.  Fortunately,  by  using  claims  to  document 
assumptions about the environment, they can form the focus 
for testing. As we show in sections 4 and 5, claims can be 
reasoned about and used to prune the set of test cases that 
need to be developed.

MODEL-DRIVEN ADAPTIVE SYSTEMS
So  far,  we  have  described  how  we  can  specify 

dynamically  adaptive  behaviour  by  making  assumptions 
about the environment in which the DAS will operate, and 
by specifying a target system implemented as a pre-defined 
configuration  of  features  to  operate  in  each  identified 
environmental  domain.  Unfortunately,  the  nature  of  many 
environments for which DASs are conceived as the solution 
are  characterised  by  volatile  and  poorly  understood 
environments. Recently, however, researchers have started to 
investigate  models@run.time [23] as  a  means  to  develop 
DASs.  We  call  a  DAS  that  uses  the  models@run.time 
paradigm a Model-Driven Adaptive System, or  m-DAS. An 
m-DAS uses  run-time abstractions  to guide  its  adaptation. 
Conventionally,  such abstractions occur off-line as models 
that  inform  analysis  and  design.  An  m-DAS  derives  its 
adaptive behaviour from run-time models, and monitors the 
assumptions upon which they were created. In the event that 
a monitored assumption no longer holds, it is removed from 
the model. Monitoring can, of course, continue and the claim 
may later be reinstated, but given that the system's adaptive 
behaviour  is  derived  from  the  models,  this  model 
modification  can  potentially  yield  modified  adaptive 
behaviour.

We have created an in-memory representation of LoREM 
models that  can be modified and reasoned with by an m-
DAS  at  runtime,  and  have  developed  a  tool  that  allows 
LoREM models developed using the OME modelling tool 
[24] to be imported into an active system, converting them to 
this internal representation. We have also developed a tool 
that allows adaptation policies for the adaptive middleware 
component framework GridKit [10] to be generated from the 
in-memory  models.  The  in-memory  representation  of  the 
LoREM models, along with the tool that loads them, allows 
a system to analyse  and reason about its  own model. The 

policy generation tool allows the policies codifying a DAS' 
adaptive  behaviour  to  be generated  from the models  after 
this  analysis  and  reasoning.  Together,  the  tools  allow  a 
GridKit-based m-DAS to load models developed during the 
system's design and specification phases, reason with them 
and potentially modify them, and for the m-DAS to derive its 
adaptive behaviour from the models independently.

Monitoring  assumptions  is  analogous  to  requirements 
monitoring  [25],  where  the  levels  of  satisfaction  for  key 
requirements are monitored. A DAS offers the possibility of 
modifying the system in response to this data, which an m-
DAS achieves via model analysis.

Returning to the adaptive image viewer, Figure 2 depicts 
a  claim refinement model. A claim refinement model is an 
acyclic directed graph that serves as a record of the reasoning 
behind  the  claims  used  to  make  or  break  a  softgoal 
contribution  link.   In  short,  this  decomposition  of 
assumptions  allows  broad,  high-level  assumptions  to  be 
broken  down  into  smaller,  more  specific  and  crucially 
monitorable  supporting  assumptions.  Figure  2  shows  the 
claim  refinement  model  for  the  S2 (high  latency)  target 
system. The bottom-level claim on the model is “Extra Speed 
Needed  in  S2”.  Such  bottom-level  claims  are  typically 
derived  by  combining  assumptions  and  assertions  on  the 
environment  and  the  system  that,  in  a  claim  refinement 
model, are also modelled as claims. “Extra Speed Needed in 
S2” was the claim used in Figure 1 to support the decision to 
“Use Cache” in S2. The claim refinement model shows that 
“Extra Speed Needed in S2” is derived from the conjunction 
of  the  claims  “Latency  is  High  in  S2”  and  “Caching  will 
Improve Perceived Speed”. Significantly, the latter claim is 
monitorable. Converting the adaptive image viewer to an m-
DAS would allow the system to reconsider the decision to 
“Use Cache” in S2 if monitoring data indicated that the cache 
was  not  in  fact  improving  speed,  which  could  occur  if 
images were being accessed non-sequentially, for example.

As  illustrated  by  the  preceding  example,  this  extra 
autonomy  potentially  allows  an  m-DAS  to  overcome 
deficiencies in the models upon which it is based, such as 
erroneous  assumptions or  minor  errors  made  when 
partitioning the environment into domains. An m-DAS can 
then tailor its operations to unanticipated or misunderstood 
domains  as  it  encounters  them.  However,  this  additional 
autonomy comes  at  a  cost  in  terms  of  predictability  and 
assurance: with a DAS, it remains possible to guarantee that 
the system will  always  take  the  form of  one  of  its  target 
systems, an m-DAS offers no such guarantee in that any of 
the target systems could have been modified.

MODEL-DIRECTED DAS TESTING
m-DAS testing can be separated into two categories of 

activity:  testing  of  the  system's  business  logic  and  of  the 
system's adaptive behaviour. Testing of the system's business 
logic is akin to that carried out for traditional, static systems 
and its commission is assumed. Testing the system's adaptive 
behaviour seeks to verify that the configurations adopted in 
given  scenarios  are  optimal,  or  at  the  very  least  not 
damaging.

Figure 2. Claim Refinement Model for Image Viewer's S2 Target System
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To test the  adaptive  behaviour  of  conventional  DASs, 
testing scenarios need to be designed for each of the target 
systems that can be selected, along with scenarios designed 
to test the system's ability to correctly identify which of the 
target  systems  should  be  used  in  the  expected  operating 
environment. This amounts to a considerable testing burden, 
but remains within the bounds of feasibility.  However, m-
DASs offer greater degrees of autonomy than conventional 
DASs, which allow systems to better tolerate unanticipated 
changes in their operating environment. 

Unfortunately, in order to fully test an m-DAS' adaptive 
behaviour,  it  is  necessary  to  identify  and  understand  the 
system's scope for emergent behaviour completely. To offer 
this level of testing coverage, it would be necessary to devise 
scenarios  for  every  possible  combination  of  assumptions 
holding  and  being  broken,  with  each  combination  of 
assumptions essentially representing a testing scenario at the 
modelling  stage.  This  means  that  to  find  the  number  of 
additional testing scenarios for all potential modifications to 
an individual target system: T=2n−1 Where n represents the 
number  of  bottom-level  claims  (i.e.  claims  that  make  or 
break softgoal contribution links) on the behaviour model for 
a  particular  target  system  of  the  m-DAS.  We  subtract  1 
because the scenario in which all  assumptions hold is  the 
original model, in which the system will adopt the original 
target system design.

This  explosion  in  testing  burden  may  place  such  an 
approach  beyond  the  bounds  of  feasibility  for  all  but  the 
simplest systems, and all but the biggest budgets. 

To reduce the number of testing scenarios that need to be 
devised,  we  present  an  approach  to  direct  limited  testing 
resources  to certain key scenarios.  As with a conventional 
DAS, it is necessary to design testing scenarios for each of 
the m-DAS' target systems, along with scenarios to test the 
boundaries between target systems and the m-DAS' ability to 
switch between them. Our approach,  however,  focuses  on 
reducing the number of additional scenarios required to test 
for  emergent  behaviour  in  the  m-DAS  in  the  event  of  it 
departing from the original target system designs.

We  define  the  key  additional  testing  scenarios  as  the 
most  likely  to  occur  of  those  that  offer  the  potential  to 
uncover  emergent  behaviour.  We  use  claim  refinement 
models  to  assess  both  the  likelihood  of  a  scenario  being 
encountered  during  the  system's  operation  along  with  the 
potential  for  emergent  behaviour  to  be  discovered  using 
model analysis. We sort each claim in the claim refinement 
model into one of three categories.  Sorting is informed by 
domain  expertise  possibly  supported  by  the  results  of 
simulations or stochastic modelling. The three categories are:

Unbreakable claims. Here, the term "unbreakable" does 
not necessarily mean that the claim is axiomatic, but refers to 
the fact that the m-DAS has no means of monitoring, and 
thus invalidating the claim. These claims can essentially be 
removed from consideration, given that they will never cause 
models to be modified at  run-time, and thus never  trigger 
unexpected adaptations and associated emergent behaviour.

Qualified  claims are  monitored  by  the  m-DAS,  and 
could theoretically  prove a  source  of  emergent  behaviour. 

However,  the domain expert  believes  that  the system will 
never encounter a situation where the claim is broken.

Uncertain  claims,  are  monitored  by  the  m-DAS,  and 
although the domain expert believes that the such claims are 
true, they also consider it conceivable that the system may in 
extreme  or  unusual  circumstances  have  to  invalidate  the 
claims.

Looking at the claim refinement model for the adaptive 
image viewer’s  S2 target  system, depicted in Figure 2, we 
can characterise “Latency is High in S2” as a qualified claim, 
given  that  high  latency  is  D2’s  (the  domain  in  which  S2 

operates) defining characteristic. The “Caching will Improve 
Perceived  Speed”  claim,  however,  is  more  dubious.  The 
possibility  of  monitoring  the  cache’s  usefulness  by 
monitoring load-times with the cache and comparing this to 
the underlying  file  load  and  render  speed,  along with  the 
possibility of the cache incorrectly predicting the next image 
for pre-loading, means that the claim should be considered 
uncertain.

Naturally,  testing  scenarios  covering  broken  uncertain 
claims are the ones that are most likely to occur. However, 
by propagating the "unbreakable" label throughout the tree it 
becomes possible to identify some bottom-level claims that 
do not have the potential to cause the system to modify the 
run-time models,  and thus offer  no potential  for  emergent 
behaviour.  Essentially,  we  are  proposing  that  the  testing 
priorities for each of the three groups of claim or underlying 
assumption  are,  first,  Uncertain  claims,  then  Qualified 
claims, with no need to consider the Unbreakable claims.

This  model-driven  procedure  removes  from 
consideration  assumptions  that  have  no  potential  to  force 
model modification, which may cause emergent behaviour. 
By devising testing scenarios for every combination of the 
remaining  uncertain  and  qualified  bottom-level  claims; 
developers  test  all  the scenarios  that  offer  the potential  to 
uncover potentially undesirable emergent behaviour. If even 
this  reduced  number  of  scenarios  proves  too  difficult  or 
costly to construct and test against, qualified claims can also 
be  removed  from  consideration.  Considering  only  the 
uncertain  claims,  developers  focus  test  coverage  on  the 
scenarios  most  likely  to  occur,  but  sacrifice  a  degree  of 
assurance  and  introduce  a  danger  that,  should  a  claim 
classification  prove  incorrect  and  a  qualified  claim  be 
broken,  that  the  system  may  behave  unexpectedly. 
Investigating  qualified  claims  offers  a  greater  degree  of 
assurance,  with  no  inherent  danger  stemming  from claim 
classification inaccuracy, whilst investigating only uncertain 
claims reduces testing burden significantly.

CASE STUDY

To illustrate our test case pruning method, we present a 
conceptually  simple  m-DAS and work  through  the  model 
analysis  for  a  single  target  system.  We  also  present  the 
results  of  the same analysis  for  the m-DAS’s other  target 
systems to show the kind of testing workload reduction the 
method can yield in even a modestly sized m-DAS.

GridStix [1] is a system deployed on the River Ribble in 
North  West  England  that  performs  flood  monitoring  and 
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prediction.  The  system  was  originally  developed  as  a 
conventional  compositionally-adaptive  DAS but  we are  in 
the process of producing an experimental m-DAS based on 
the original system design. It takes the form of an intelligent 
wireless sensor network with multiple nodes measuring river 
depth and flow rate using a variety of sensors, including the 
analysis  of images taken with an on-board digital  camera. 
The  GridStix  system  uses  the  GridKit  middleware  [10], 
which provides the system's adaptive capabilities.

The flow rate  and river  depth data  is  used by a point 
prediction model, which predicts the likelihood of the river 
flooding using data from the local node and data cascaded 
from  nodes  further  upstream.  The  more  upstream  data 
available, the more accurate the prediction.

The environment in which GridStix operates is volatile, 
as the river is liable to flooding. When the river floods, the 
nodes  are  in  danger  of  submersion,  and  of  sustaining 
significant  damage  from water-borne  debris.  As  such,  the 
GridStix system needs to be able to maximize its ability to 
withstand node failure in order to maintain the connectivity 
of the surviving nodes.

The  GridStix  nodes  have  processing  capability,  which 
allows  processing  of  the  data  and  execution  of  flood 
prediction  models  on-site  with  the  system  acting  as  a 
lightweight  grid.  This  enables  pictures  taken  with the on-
board digital cameras to be analysed yielding the river's flow 
rate, which removes the need to use expensive and difficult 
to  maintain  ultrasonic  sensors.  However,  the  nodes  are 
resource-constrained and some tasks, particularly flow rate 
calculations, are best performed by distributing computation 
among the nodes.

Distributing computation has a cost in terms of the power 
consumed by inter-node communication, which is a serious 
issue since GridStix's location is remote, and power has to be 
provided by batteries and solar panels. The GridStix system 
can communicate using one of two spanning tree algorithms: 
Shortest Path (SP) or Fewest Hop (FH) to offer lower power 
consumption  or  a  network  more  tolerant  of  node  failure, 
respectively.  As  such,  GridStix  has  three  key  conflicting 
softgoals:  “Energy  Efficiency”,  “Fault  Tolerance”  and 
“Prediction Accuracy”.

When  specifying  the  GridStix  system,  domain  experts 
partitioned  the  operating  environment  into  three  distinct 
domains: D1 (Normal), D2 (High Flow) and D3 (Flood). The 
D1 (Normal)  domain is  characterised  by a quiescent  river, 
with little imminent risk of flood or danger to local residents 
or  the  nodes  themselves.  The  D2 (High  Flow)  domain 
features a fast-flowing river, that may suddenly flood. The 
D3 (Flood) domain occurs when the depth increases and the 
river is about to flood, which means that the nodes are in 
imminent danger of failure.

 For  each  domain,  a  target  system  was  devised,  with 
target system S1 tailored for domain D1, S2 for D2 and S3 for 
D3 respectively, as depicted in Figure 3.

The LoREM models for the system have previously been 
published  in  full  [12];  and  due  to  space  constraints  this 
section will focus only on those models key to illustrating 
our test scenario pruning technique: the Level 1 Behaviour 

models. The Behaviour model for S3 (Flood) is depicted in 
Figure 4.

The key goal in Figure 4 is for the target system (S3) to 
“Predict Flooding”. This goal is achieved by completing the 
task:  “Provide  Point  Prediction”  which  can  be  further 
decomposed  into  the  goals:  “Measure  Depth”,  “Calculate 
Flow Rate” and “Communicate Data”.  The “Communicate 
Data”  goal  depends  on  the  “Transmit  Data”  goal  being 
achieved for its own satisfaction, as represented by the “D” 
dependency link between the two. The “Measure Depth” and 
“Calculate  Flow Rate”  goals  produce  “Depth”  and  “Flow 
Rate”  resources  respectively,  which  are  used  in  other 
LoREM models,  which are beyond the scope of this case 
study.

The “Calculate  Flow Rate”,  “Communicate  Data”  and 
“Transmit Data” goals all have several alternative methods 
of  satisfaction,  represented  by  tasks  connected  to  the 
respective goals with means-end links.

The three  key conflicting  softgoals  are  represented  by 
lozenges on the right of Figure 4, and the potential impact of 
selecting  individual  tasks  to  satisfy  goals  with  several 
alternatives  on  each  of  the  softgoals  are  represented  by 
contribution links. In i* there are 7 types of contribution link 
indicative of impact magnitude. Figure 4, however uses only 
2  of  these  contribution  links:  help  and  hurt  to  capture  a 
moderate strength positive and negative impact, respectively. 
The tasks selected to satisfy goals in the S3 target system are 
coloured white for clarity.

Attached to the contribution links in Figure 4 are three 
claims, represented by clouds on the diagram.  The claims 
make or break the softgoal contribution links to which they 
are attached.  Makes indicates that the contribution link was 
lent  special  credence when reaching the selection decision 
for  this  target  system,  whereas  breaks indicates  the 
contribution link was overlooked or dismissed. These claims 
are  so-called  bottom-level  claims,  whose  basis  can  be 
examined  in  the  associated  claim  refinement  model.  The 
claim refinement model for the S3 target system is depicted 
in Figure 5.

The three bottom-level claims shown in Figure 4 appear 
at  the  bottom  of  Figure  5,  connected  to  their  supporting 
claims with contribution links. For example, it is possible to 
establish  from  Figure  4  that  Wi-Fi  was  selected  over 

Figure 3. Mapping Between GridStix Domains and Target Systems
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Bluetooth to satisfy the “Transmit Data” goal in S3 because 
Bluetooth  was  considered  too  risky  in  terms  of  Fault 
Tolerance.  Examining  Figure  5  allows  the  basis  for  this 
claim to be established: that Bluetooth is less resilient than 
Wi-Fi and that, given the river is about to flood in S3, there is 
a significant risk of node failure. Bluetooth is considered less 
resilient  than  Wi-Fi  because  of  its  poorer  range,  which 
reduces  the  number  of  nodes  an  individual  node  may 
communicate with, so increasing the likelihood of a single 
node  failure  hampering  communication  throughout  the 
network.

Although  the  bottom-level  claims  in  Figure  4  aren't 
directly monitorable by an m-DAS at run-time, some of their 
supporting claims are. Thus, if the m-DAS discovers at run-

time that when nodes are submerged, Wi-Fi communication 
proves no more feasible than Bluetooth, the “Bluetooth too 
risky for S3” claim can be invalidated, and the system can 
reconsider the decision to use Wi-Fi over Bluetooth in this 
target system. Using Bluetooth in this instance would allow 
the system to better satisfice its “Energy Efficiency” softgoal 
without further harming “Fault Tolerance”, for which it has 
no means of satisfaction.

There are 3 bottom-level claims in Figures 4 & 5, and if 
we  were  to  attempt  to  devise  testing  scenarios  for  every 
combination of claims we would be attempting to create 7 
additional scenarios, not all of which would be feasible or 
even necessarily possible. The scenario in which all claims 

Figure 4. GridStix Behaviour Model for S3 (Flood)

Figure 5. GridStix Claim Refinement Model for S3 (Flood)
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hold is the anticipated target system, for which appropriate 
testing scenarios would be created as  a matter of course. 

An analysis of all the claims by a domain expert yielded 
four  monitorable  claims,  of  which  two  were  classed 
qualified, and two uncertain. 

 The  analyst  had  qualified  confidence  in  the  “Single 
Node [Image Processing] reduces accuracy” claim because 
the time taken to perform image analysis on a single node is 
significant,  and  there  is  a  possibility  of  the  river's  state 
having  changed  significantly  in  the  meantime.  Given  the 
obvious  possibility  of  nodes  becoming  submerged  or 
damaged  when the river  floods,  the  "Faults  Likely in  S3" 
claim was likewise classed as qualified.

The claims "SP is less resilient than FH" and "Bluetooth 
is less resilient than Wi-fi" were both considered uncertain 
because the analyst was not certain whether the theoretically 
more  resilient  option  in  each  case  would  actually  prove 
demonstrably more resilient in the field.

Propagating  the  “unbreakable”,  “qualified”,  and 
“uncertain” labels throughout the tree depicted in Figure 5, it 
becomes apparent that two of the three bottom-level claims 
could be impacted by an uncertain claim being proven false 
at  runtime,  thus  offering  the  potential  for  emergent 
behaviour.  The  “Single  Node  Reduces  Accuracy”  claim, 
however,  derives  qualified  confidence  from its  supporting 
claims.

 In the entire GridStix system, only one of the bottom-
level claims was assessed to be directly monitorable, which 
is  understandable  given  their  broad  nature.  However,  a 
significant  number  of  bottom-level  claims  could  be 
monitored  indirectly,  via  monitoring  of  their  supporting 
claims and analysis of the claim refinement model. In Figure 
6, the claim refinement model from Figure 5 is annotated to 
show the unbreakable,  qualified and uncertain claims. The 
claims  in  Figure  6  that  are  labelled  as  either  qualified  or 
uncertain  that  are  not  also  labelled  monitorable  are  these 
indirectly monitorable claims.

As figure 6 shows, for the S3 target system, there are no 
bottom-level  claims  classified  as  unbreakable,  one 
considered qualified and two considered uncertain. Creating 
test scenarios for all combinations of uncertain claims, that is 
the  scenarios  with  greatest  potential  to  uncover  emergent 
behaviour,  would  require  only  22−1  (i.e.  3)  scenarios,  as 
opposed to the original 23−1 (i.e. 7) scenarios.

The  same  analysis  was  performed  on  the  claim 
refinement models for the other two GridStix target systems: 
S1 and  S2.  The  results  of  the  analysis  for  all  three  are 
depicted in Table I.

TABLE I. GRIDSTIX  BOTTOM-LEVEL CLAIM DISTRIBUTION 
BY TARGET SYSTEM

Target System Unbreakable 
Claims

Qualified 
Claims

Uncertain 
Claims

S1 2 1 2

S2 1 0 2

S3 0 1 2

The  S1 target  system  stands  out  as  having  the  largest 
number of bottom-level claims (5), which is representative of 
the complexity of the trade-offs in system design made for 
this domain. The S1 domain prioritises “Energy Efficiency” 
particularly  highly,  with  a  delicate  balance  needing  to  be 
struck between it and the other, conflicting, softgoals. In [19] 
we suggested that the rationale recorded with claims should 
be as close as possible to that actually used, to maximise the 
technique’s  benefit  in  terms  of  traceability.   From  a 
monitoring  and  testing  perspective,  recording  the  same 
rationale,  albeit  imprecisely,  using fewer  claims would be 
advantageous. Hence, there is a tension between the needs of 
tracing and testing with the number of bottom-level claims 
used  in  S1 reflecting  a  bias  towards  tracing.  Although 
removing  unbreakable  claims  from  consideration  in  this 
domain  seems  particularly  effective,  perhaps  due  to  this 
tracing  bias,  we  would  consider  the  second  two domains 
more  indicative  of  the  scenario  reduction  method’s 
performance in general.

Figure 6. GridStix Claim Refinement Model for S3 (Flood) Annotated with Claim Classifications
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Table  II  shows  the  numbers  of  additional  testing 
scenarios  needed  to  test  for  emergent  behaviour  in  each 
(potentially modified) target system for all claims, qualified 
claims  and  uncertain  claims respectively.  This  shows that 
using our strategy,  the number of testing scenarios  for S1, 
even though it has 5 bottom-level claims, could be restricted 
to 3 (testing for uncertain claims only)  or 7 (qualified and 
uncertain claims).

TABLE II. EMERGENT BEHAVIOUR TESTING SCENARIOS 
FOR GRIDSTIX SYSTEM

Target System All Scenarios Qualified & 
Uncertain

Uncertain 
Scenarios

S1 31 7 3

S2 7 3 3

S3 7 7 3

Total 45 17 9

Thus, devising testing scenarios for all combinations of 
uncertain  claims  would  require  9  scenarios,  and  for  the 
qualified  and  the  uncertain  claims  would  require  17 
scenarios. Devising scenarios for all combinations of claims 
in the GridStix system would require 45 additional scenarios. 
By  devising  testing  scenarios  for  the  17  combinations  of 
qualified  and  uncertain  claims,  all  the  claim-monitoring 
related potential sources of emergent behaviour are covered. 
This is of course preferable, but if infeasible, creating the 9 
scenarios derived from uncertain claims will still offer some 
degree of assurance, although limited by the accuracy of the 
claim classification.

The GridStix system is only modestly complex from a 
modelling  perspective,  and  the  environment  in  which  it 
operates  although  challenging  for  the  system  can  be 
partitioned into a  small  number  of  domains.  As such,  the 
numbers of testing scenarios remains fairly low. However, 
the case study has shown that our model analysis can offer a 
real reduction in the number of test scenarios for an m-DAS' 
potentially modified adaptive behaviour without sacrificing 
assurance, or alternatively can trade a degree of assurance for 
a dramatic reduction in testing workload.

CONCLUSIONS

Designing  any degree  of  autonomy into a  system will 
have  a  negative  impact  on  the  degree  of  assurance  it  is 
possible to afford it, and a corresponding increase in the cost 
of  testing the system to achieve  this  assurance.  The more 
autonomy a system has, the more pronounced this assurance 
deficiency and testing challenge will become. This key trade-
off  is  often overlooked by researchers  looking at  ways  to 
specify, design and build autonomous systems.

Dynamically  Adaptive  Systems  are  a  notable  class  of 
system,  representing  a  first  step  on  the  road  to  fully 
autonomous  systems.  Researchers  have  been  making 
progress in developing methods to specify, design and build 
DASs  but  the  thorny  issues  of  testing  and  delivering 

assurance  have  been  relatively  neglected  to  date.  Testing 
workload  in  DASs  multiplies  with  the  number  of  target 
systems  and  potential  transitions  between  them,  and  this 
complexity explosion will only become more pronounced as 
systems with greater autonomy are conceived.

The class  of  Dynamically  Adaptive  System which  we 
call  an  m-DAS  load  representations  of  their  design-time 
models  into memory at  run-time.  Such  systems  use  these 
run-time models to not only guide adaptation decisions and 
to  derive  adaptation  logic,  but  also  to  monitor  the 
assumptions on which the models were constructed. By re-
evaluating the models in the event of an assumption being 
proven false, it becomes possible for an m-DAS to adopt a 
configuration that was unforeseen at design time but which 
best satisfies the system's requirements in circumstances that 
were  similarly  unforeseen.  This  sub-class  of  DAS  has  a 
greater  degree  of  autonomy  than  previous  DASs,  and 
amplify the difficulty in testing over and above that seen in 
traditional DASs.

We have proposed a method of  model-directed  testing 
that  addresses  the  problem  of  scalability  in  testing  the 
adaptive behaviour of DASs, and m-DASs in particular, by 
identifying  the  scenarios  most  likely to  uncover  emergent 
behaviour.  The  method  allows  developers  to  achieve 
assurance when testing all scenarios is simply infeasible.

Even using this method, the testing workload for DAS, or 
m-DAS in particular is still considerable, and far greater than 
that  for  a  traditional,  static  system.  This  additional 
complexity  is  essentially  another  facet  of  the  inherent 
complexity in a DAS, which acts to impede the economic 
selection of a DAS or m-DASs solution in situations where a 
traditional,  static  system  is  feasible  even  if  not  perfectly 
suited.

Our testing reduction strategy is, of course, dependent on 
the quality of  the assessment  made by domain experts  or 
other means of analysis of which assumptions are risky. A 
monitored assumption that is proven false at run-time, but 
classed as qualified when designing testing scenarios still has 
the potential to introduce unexpected emergent behaviour if 
only the uncertain scenarios were devised and tested against. 
Hence, there is a distinct preference for analysing both the 
qualified and the uncertain claims. For an m-DAS, it would 
be possible to prevent this emergent behaviour at the expense 
of  the  system's  autonomy  and  ability  to  adapt  to  these 
circumstances even without creating the additional scenarios, 
by removing the monitor for assumptions considered safe. 
This, of course, is a refinement of the original autonomy vs. 
assurance trade-off, and is a decision best left to individual 
system designers.
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