
Managing Testing Complexity in Dynamically Adaptive Systems
A model-driven approach

Kristopher Welsh, Pete Sawyer
Computing Department

Lancaster University
Lancaster, UK

[welshk,sawyer]@comp.lancs.ac.uk

Abstract—Autonomous systems are increasingly conceived as
a means to allow operation in changeable or poorly understood
environments. However, granting a system autonomy over its
operation removes the ability of the developer to be completely
sure of the system’s behaviour under all operating contexts.
This combination of environmental and behavioural
uncertainty makes the achievement of assurance through
testing very problematic. This paper focuses on a class of
system, called an m-DAS, that uses run-time models to drive
run-time adaptations in changing environmental conditions.
We propose a testing approach which is itself model-driven,
using model analysis to significantly reduce the set of test cases
needed to test for emergent behaviour. Limited testing
resources may therefore be prioritised for the most likely
scenarios in which emergent behaviour may be observed.

Keywords-component; model-driven; model-directed; testing;
autonomous; dynamically adaptive systems

INTRODUCTION

Autonomous computing is envisaged by many as
Computer Science's ultimate challenge. Systems that are
self-managing, self-configuring, self-tuning, self-repairing
and self-maintaining are a staple of science-fiction, but
complete autonomy is still some distance away. We are,
however, starting to create systems that posses a limited
ability to perform self-configuration as a means to achieve a
degree of autonomy [1] [2]. These so called self-adaptive [3],
or Dynamically Adaptive Systems (DASs) [4] represent an
important first step on the road to autonomic systems, and
are the subject of much research effort. [5] [6]

McKinley et al. [7] identified two distinct types of self-
adaptive behaviour: parametric and compositional.
Parametric adaptation is achieved by coding several different
system or component behaviours, switched via some internal
parameter or flag, that is set according to some pre-defined
criteria. This style of adaptation is suitable for small-scale
systems that need only to be able to switch between a small
number of behaviours, where both the behaviours and the
circumstances in which each is to be employed are fully
understood when specifying the system. Compositional
adaptation is achieved by allowing structural elements of the
system to be combined and recombined at run-time. Many
current state of-the-art DASs [1] [2] use pre-selected
configurations of components, with run-time component

substitution taking place in response to changes in the
system's operating environment.

Although several architectural approaches to
compositional adaptation have been proposed (for example,
[6], [8] & [9]), it is more common for DASs to utilise some
form of adaptive middleware (for example, [10] & [11]),
thus separating the tasks of environmental monitoring,
component substitution and state management from the
system's business logic. Such adaptive middleware matches
component selections with environmental conditions in
accordance with adaptation policies, which specify the
conditions under which components are substituted.

Recently, researchers have investigated ways to
understand and specify the requirements for a DAS, with a
consensus emerging that goal-based methods [12] [13] offer
a useful means to reason about how competing system goals
are traded-off as the environment changes. There are several
goal-based modelling approaches for DASs that utilise the
popular KAOS [14] and i* [15] techniques ([12], [16] and
[17] for example). However, despite the issue of DAS
verification being highlighted as needing attention [3], there
has been little work on the issue to date. The work that has
been completed (e.g. [18]) has focussed on verifying
business logic after adaptation, as opposed to our interest:
verifying that the adaptation itself is desirable, or better still
optimal. This is a key issue since the dynamic behaviour of
DASs represents an additional dimension of behavioural
complexity over conventional, static systems. This additional
complexity impacts on verification of a DAS’s behaviour
since it is necessary not only to verify that the DAS operates
as desired when the environment is in a given state, but that
the DAS adapts its behaviour appropriately as the
environment changes.

We argue that allowing a system any degree of autonomy
over its operation removes a proportionate degree of
certainty over how the system will behave. This certainty is
key to delivering assured, dependable systems and can only
truly be achieved with complete knowledge of what
decisions a DAS will make in any given scenario, coupled
with a full and accurate understanding of the scenarios that it
will face. Unfortunately, both of these prerequisites are
extremely difficult to achieve for a DAS. The very nature of
the type of environment in which a DAS will prove most
beneficial is one of complexity and volatility, and devising

Third International Conference on Software Testing, Verification, and Validation Workshops

978-0-7695-4050-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSTW.2010.57

290

testing scenarios to cover every permutation of system
configurations and environmental properties is not only
wickedly complex, but exponentially proportional to the
degree of system autonomy. Essentially, a DAS is likely to
exhibit emergent behaviour as a result of uncertainty about
the environment in which the DAS must operate and
uncertainty about how the DAS will respond. Verification of
a DAS is therefore not only about assuring that the specified
behaviour is delivered, but, critically, also about ensuring
that any emergent behaviour is not damaging. It is this latter
problem that we are concerned with here.

Of course, testing is not the only means of validating
software, and in some cases it may be possible to offer an
acceptable degree of assurance through monitoring, or
allowing full or partial human control over adaptation.
However, such approaches only offer limited assurance, and
do so at the expense of autonomy. We argue that even partial
testing can offer a greater degree of assurance while still
allowing greater freedom in terms of autonomy,

The rest of this paper is organised as follows: Section 2;
the next section, examines related work in the DAS research
area, with a particular focus on the model-driven engineering
of DASs, which this work builds upon. Section 3 proposes a
new class of DAS which offers a greater degree of autonomy
than the current state of the art. Section 4 proposes a model-
driven testing technique that allows limited testing resources
to be directed to best offer assurance for this new class of
DAS. Section 5 presents a case study to illustrate both the
class of system described in section 3 and the testing
methodology described in section 4, whilst section 6
concludes the paper.

BACKGROUND

Our existing LoREM process [12] offers a requirements
modelling approach for DASs operating in environments that
can be partitioned into distinct domains, with a steady-state
system, termed a target system being devised for each, as
conceptualised in [19].

LoREM is based on the i* [15] framework which
supports reasoning about systems in terms of agents,
dependencies, goals and softgoals. Softgoals are a
particularly useful concept since they represent goals that can
typically be only partially satisfied or satisficed. In practice,
softgoals often take the form of high-level non-functional
requirements (NFRs). Softgoals often represent the foci of
decision points since different solution strategies will
satisfice different softgoals to varying degrees. Hence,
selection of the ‘best’ solution will typically entail devising
several solutions, comparing their softgoal satisficement
properties and selecting the one that offers the best trade-off.
A strength of i* is that it allows these trade-offs to be
reasoned about and recorded explicitly. This proves to be
particularly useful for a DAS where the relative priorities
assigned to different softgoals may vary depending on which
domain the environment is in at any given time.

Accordingly, with LoREM, a separate target system is
specified to operate within each domain of the environment,
while adaptation from one target system to another as the

environment transitions between domains is specified
separately for each valid transition.

In [20] we augmented the LoREM i* models with
claims, a concept which we have borrowed from the NFR
Framework's [21] tool-kit. Claims can be used to record
assumptions about the domain or the behaviour of the DAS
itself. This is significant because the potential for emergent
behaviour is closely linked to the validity of these
assumptions.

As a simple example, Figure 1 models one of two target
systems for an adaptive image viewer, first described in [22].
The system's only adaptive capability is to introduce an
image caching component as the latency encountered when
loading files increases beyond a set threshold.

In Figure 1 the circle with the broken line represents the
target system S2 that operates in the domain D2: High
Latency (not shown). Ellipses represent goals. In this case,
S2 needs to satisfy the goal “Display Images”. Hexagons are
tasks that operationalise goals. Here, the task “Render Image
Data” satisfies the “Display Images” goal, as depicted by the
arrow-headed means-end relationship arc. “Render Image
Data” itself is decomposed (as depicted by the arcs with
crossbars) to the task “Decode Data” and the sub-goal “Load
Data”. “Load Data” is interesting because it can be satisfied
by two alternate strategies represented by the tasks “Use
Cache” and “Don’t Use Cache”. Both alternatives are shown
to have different impacts on satisficement of the two
softgoals “Maximise Speed” and “Minimise Memory Usage”
that are depicted using the softgoal symbol: a lozenge. The
arcs from the two alternative tasks to the softgoals are
contribution links and show (e.g.) that if a cache is used, it
helps satisficement of the “Maximise Speed” softgoal but
hurts satisficement of the “Minimise Memory Usage”
softgoal. Since both softgoals have one hurts and one helps
contribution link for either solution strategy, the choice
between them is not clear. However, the cloud attached to
one of the contribution links is a claim and its effect is to
assert that, in the context of domain D2, the “Maximise
Speed” softgoal should take priority, leading to selection of
the “Use Cache” solution.

Figure 1. Level 1 Model of Image Viewer's S2 Target System

291

In the next section we describe how LoREM models can
be consulted and modified at run-time. This helps make a
DAS tolerant of unanticipated environmental conditions, but
introduces the likelihood of emergent behaviour which
represents a risk to the integrity of the system. Testing for
such emergent behaviour is important but potentially very
costly. Fortunately, by using claims to document
assumptions about the environment, they can form the focus
for testing. As we show in sections 4 and 5, claims can be
reasoned about and used to prune the set of test cases that
need to be developed.

MODEL-DRIVEN ADAPTIVE SYSTEMS
So far, we have described how we can specify

dynamically adaptive behaviour by making assumptions
about the environment in which the DAS will operate, and
by specifying a target system implemented as a pre-defined
configuration of features to operate in each identified
environmental domain. Unfortunately, the nature of many
environments for which DASs are conceived as the solution
are characterised by volatile and poorly understood
environments. Recently, however, researchers have started to
investigate models@run.time [23] as a means to develop
DASs. We call a DAS that uses the models@run.time
paradigm a Model-Driven Adaptive System, or m-DAS. An
m-DAS uses run-time abstractions to guide its adaptation.
Conventionally, such abstractions occur off-line as models
that inform analysis and design. An m-DAS derives its
adaptive behaviour from run-time models, and monitors the
assumptions upon which they were created. In the event that
a monitored assumption no longer holds, it is removed from
the model. Monitoring can, of course, continue and the claim
may later be reinstated, but given that the system's adaptive
behaviour is derived from the models, this model
modification can potentially yield modified adaptive
behaviour.

We have created an in-memory representation of LoREM
models that can be modified and reasoned with by an m-
DAS at runtime, and have developed a tool that allows
LoREM models developed using the OME modelling tool
[24] to be imported into an active system, converting them to
this internal representation. We have also developed a tool
that allows adaptation policies for the adaptive middleware
component framework GridKit [10] to be generated from the
in-memory models. The in-memory representation of the
LoREM models, along with the tool that loads them, allows
a system to analyse and reason about its own model. The

policy generation tool allows the policies codifying a DAS'
adaptive behaviour to be generated from the models after
this analysis and reasoning. Together, the tools allow a
GridKit-based m-DAS to load models developed during the
system's design and specification phases, reason with them
and potentially modify them, and for the m-DAS to derive its
adaptive behaviour from the models independently.

Monitoring assumptions is analogous to requirements
monitoring [25], where the levels of satisfaction for key
requirements are monitored. A DAS offers the possibility of
modifying the system in response to this data, which an m-
DAS achieves via model analysis.

Returning to the adaptive image viewer, Figure 2 depicts
a claim refinement model. A claim refinement model is an
acyclic directed graph that serves as a record of the reasoning
behind the claims used to make or break a softgoal
contribution link. In short, this decomposition of
assumptions allows broad, high-level assumptions to be
broken down into smaller, more specific and crucially
monitorable supporting assumptions. Figure 2 shows the
claim refinement model for the S2 (high latency) target
system. The bottom-level claim on the model is “Extra Speed
Needed in S2”. Such bottom-level claims are typically
derived by combining assumptions and assertions on the
environment and the system that, in a claim refinement
model, are also modelled as claims. “Extra Speed Needed in
S2” was the claim used in Figure 1 to support the decision to
“Use Cache” in S2. The claim refinement model shows that
“Extra Speed Needed in S2” is derived from the conjunction
of the claims “Latency is High in S2” and “Caching will
Improve Perceived Speed”. Significantly, the latter claim is
monitorable. Converting the adaptive image viewer to an m-
DAS would allow the system to reconsider the decision to
“Use Cache” in S2 if monitoring data indicated that the cache
was not in fact improving speed, which could occur if
images were being accessed non-sequentially, for example.

As illustrated by the preceding example, this extra
autonomy potentially allows an m-DAS to overcome
deficiencies in the models upon which it is based, such as
erroneous assumptions or minor errors made when
partitioning the environment into domains. An m-DAS can
then tailor its operations to unanticipated or misunderstood
domains as it encounters them. However, this additional
autonomy comes at a cost in terms of predictability and
assurance: with a DAS, it remains possible to guarantee that
the system will always take the form of one of its target
systems, an m-DAS offers no such guarantee in that any of
the target systems could have been modified.

MODEL-DIRECTED DAS TESTING
m-DAS testing can be separated into two categories of

activity: testing of the system's business logic and of the
system's adaptive behaviour. Testing of the system's business
logic is akin to that carried out for traditional, static systems
and its commission is assumed. Testing the system's adaptive
behaviour seeks to verify that the configurations adopted in
given scenarios are optimal, or at the very least not
damaging.

Figure 2. Claim Refinement Model for Image Viewer's S2 Target System

292

To test the adaptive behaviour of conventional DASs,
testing scenarios need to be designed for each of the target
systems that can be selected, along with scenarios designed
to test the system's ability to correctly identify which of the
target systems should be used in the expected operating
environment. This amounts to a considerable testing burden,
but remains within the bounds of feasibility. However, m-
DASs offer greater degrees of autonomy than conventional
DASs, which allow systems to better tolerate unanticipated
changes in their operating environment.

Unfortunately, in order to fully test an m-DAS' adaptive
behaviour, it is necessary to identify and understand the
system's scope for emergent behaviour completely. To offer
this level of testing coverage, it would be necessary to devise
scenarios for every possible combination of assumptions
holding and being broken, with each combination of
assumptions essentially representing a testing scenario at the
modelling stage. This means that to find the number of
additional testing scenarios for all potential modifications to
an individual target system: T=2n−1 Where n represents the
number of bottom-level claims (i.e. claims that make or
break softgoal contribution links) on the behaviour model for
a particular target system of the m-DAS. We subtract 1
because the scenario in which all assumptions hold is the
original model, in which the system will adopt the original
target system design.

This explosion in testing burden may place such an
approach beyond the bounds of feasibility for all but the
simplest systems, and all but the biggest budgets.

To reduce the number of testing scenarios that need to be
devised, we present an approach to direct limited testing
resources to certain key scenarios. As with a conventional
DAS, it is necessary to design testing scenarios for each of
the m-DAS' target systems, along with scenarios to test the
boundaries between target systems and the m-DAS' ability to
switch between them. Our approach, however, focuses on
reducing the number of additional scenarios required to test
for emergent behaviour in the m-DAS in the event of it
departing from the original target system designs.

We define the key additional testing scenarios as the
most likely to occur of those that offer the potential to
uncover emergent behaviour. We use claim refinement
models to assess both the likelihood of a scenario being
encountered during the system's operation along with the
potential for emergent behaviour to be discovered using
model analysis. We sort each claim in the claim refinement
model into one of three categories. Sorting is informed by
domain expertise possibly supported by the results of
simulations or stochastic modelling. The three categories are:

Unbreakable claims. Here, the term "unbreakable" does
not necessarily mean that the claim is axiomatic, but refers to
the fact that the m-DAS has no means of monitoring, and
thus invalidating the claim. These claims can essentially be
removed from consideration, given that they will never cause
models to be modified at run-time, and thus never trigger
unexpected adaptations and associated emergent behaviour.

Qualified claims are monitored by the m-DAS, and
could theoretically prove a source of emergent behaviour.

However, the domain expert believes that the system will
never encounter a situation where the claim is broken.

Uncertain claims, are monitored by the m-DAS, and
although the domain expert believes that the such claims are
true, they also consider it conceivable that the system may in
extreme or unusual circumstances have to invalidate the
claims.

Looking at the claim refinement model for the adaptive
image viewer’s S2 target system, depicted in Figure 2, we
can characterise “Latency is High in S2” as a qualified claim,
given that high latency is D2’s (the domain in which S2

operates) defining characteristic. The “Caching will Improve
Perceived Speed” claim, however, is more dubious. The
possibility of monitoring the cache’s usefulness by
monitoring load-times with the cache and comparing this to
the underlying file load and render speed, along with the
possibility of the cache incorrectly predicting the next image
for pre-loading, means that the claim should be considered
uncertain.

Naturally, testing scenarios covering broken uncertain
claims are the ones that are most likely to occur. However,
by propagating the "unbreakable" label throughout the tree it
becomes possible to identify some bottom-level claims that
do not have the potential to cause the system to modify the
run-time models, and thus offer no potential for emergent
behaviour. Essentially, we are proposing that the testing
priorities for each of the three groups of claim or underlying
assumption are, first, Uncertain claims, then Qualified
claims, with no need to consider the Unbreakable claims.

This model-driven procedure removes from
consideration assumptions that have no potential to force
model modification, which may cause emergent behaviour.
By devising testing scenarios for every combination of the
remaining uncertain and qualified bottom-level claims;
developers test all the scenarios that offer the potential to
uncover potentially undesirable emergent behaviour. If even
this reduced number of scenarios proves too difficult or
costly to construct and test against, qualified claims can also
be removed from consideration. Considering only the
uncertain claims, developers focus test coverage on the
scenarios most likely to occur, but sacrifice a degree of
assurance and introduce a danger that, should a claim
classification prove incorrect and a qualified claim be
broken, that the system may behave unexpectedly.
Investigating qualified claims offers a greater degree of
assurance, with no inherent danger stemming from claim
classification inaccuracy, whilst investigating only uncertain
claims reduces testing burden significantly.

CASE STUDY

To illustrate our test case pruning method, we present a
conceptually simple m-DAS and work through the model
analysis for a single target system. We also present the
results of the same analysis for the m-DAS’s other target
systems to show the kind of testing workload reduction the
method can yield in even a modestly sized m-DAS.

GridStix [1] is a system deployed on the River Ribble in
North West England that performs flood monitoring and

293

prediction. The system was originally developed as a
conventional compositionally-adaptive DAS but we are in
the process of producing an experimental m-DAS based on
the original system design. It takes the form of an intelligent
wireless sensor network with multiple nodes measuring river
depth and flow rate using a variety of sensors, including the
analysis of images taken with an on-board digital camera.
The GridStix system uses the GridKit middleware [10],
which provides the system's adaptive capabilities.

The flow rate and river depth data is used by a point
prediction model, which predicts the likelihood of the river
flooding using data from the local node and data cascaded
from nodes further upstream. The more upstream data
available, the more accurate the prediction.

The environment in which GridStix operates is volatile,
as the river is liable to flooding. When the river floods, the
nodes are in danger of submersion, and of sustaining
significant damage from water-borne debris. As such, the
GridStix system needs to be able to maximize its ability to
withstand node failure in order to maintain the connectivity
of the surviving nodes.

The GridStix nodes have processing capability, which
allows processing of the data and execution of flood
prediction models on-site with the system acting as a
lightweight grid. This enables pictures taken with the on-
board digital cameras to be analysed yielding the river's flow
rate, which removes the need to use expensive and difficult
to maintain ultrasonic sensors. However, the nodes are
resource-constrained and some tasks, particularly flow rate
calculations, are best performed by distributing computation
among the nodes.

Distributing computation has a cost in terms of the power
consumed by inter-node communication, which is a serious
issue since GridStix's location is remote, and power has to be
provided by batteries and solar panels. The GridStix system
can communicate using one of two spanning tree algorithms:
Shortest Path (SP) or Fewest Hop (FH) to offer lower power
consumption or a network more tolerant of node failure,
respectively. As such, GridStix has three key conflicting
softgoals: “Energy Efficiency”, “Fault Tolerance” and
“Prediction Accuracy”.

When specifying the GridStix system, domain experts
partitioned the operating environment into three distinct
domains: D1 (Normal), D2 (High Flow) and D3 (Flood). The
D1 (Normal) domain is characterised by a quiescent river,
with little imminent risk of flood or danger to local residents
or the nodes themselves. The D2 (High Flow) domain
features a fast-flowing river, that may suddenly flood. The
D3 (Flood) domain occurs when the depth increases and the
river is about to flood, which means that the nodes are in
imminent danger of failure.

 For each domain, a target system was devised, with
target system S1 tailored for domain D1, S2 for D2 and S3 for
D3 respectively, as depicted in Figure 3.

The LoREM models for the system have previously been
published in full [12]; and due to space constraints this
section will focus only on those models key to illustrating
our test scenario pruning technique: the Level 1 Behaviour

models. The Behaviour model for S3 (Flood) is depicted in
Figure 4.

The key goal in Figure 4 is for the target system (S3) to
“Predict Flooding”. This goal is achieved by completing the
task: “Provide Point Prediction” which can be further
decomposed into the goals: “Measure Depth”, “Calculate
Flow Rate” and “Communicate Data”. The “Communicate
Data” goal depends on the “Transmit Data” goal being
achieved for its own satisfaction, as represented by the “D”
dependency link between the two. The “Measure Depth” and
“Calculate Flow Rate” goals produce “Depth” and “Flow
Rate” resources respectively, which are used in other
LoREM models, which are beyond the scope of this case
study.

The “Calculate Flow Rate”, “Communicate Data” and
“Transmit Data” goals all have several alternative methods
of satisfaction, represented by tasks connected to the
respective goals with means-end links.

The three key conflicting softgoals are represented by
lozenges on the right of Figure 4, and the potential impact of
selecting individual tasks to satisfy goals with several
alternatives on each of the softgoals are represented by
contribution links. In i* there are 7 types of contribution link
indicative of impact magnitude. Figure 4, however uses only
2 of these contribution links: help and hurt to capture a
moderate strength positive and negative impact, respectively.
The tasks selected to satisfy goals in the S3 target system are
coloured white for clarity.

Attached to the contribution links in Figure 4 are three
claims, represented by clouds on the diagram. The claims
make or break the softgoal contribution links to which they
are attached. Makes indicates that the contribution link was
lent special credence when reaching the selection decision
for this target system, whereas breaks indicates the
contribution link was overlooked or dismissed. These claims
are so-called bottom-level claims, whose basis can be
examined in the associated claim refinement model. The
claim refinement model for the S3 target system is depicted
in Figure 5.

The three bottom-level claims shown in Figure 4 appear
at the bottom of Figure 5, connected to their supporting
claims with contribution links. For example, it is possible to
establish from Figure 4 that Wi-Fi was selected over

Figure 3. Mapping Between GridStix Domains and Target Systems

294

Bluetooth to satisfy the “Transmit Data” goal in S3 because
Bluetooth was considered too risky in terms of Fault
Tolerance. Examining Figure 5 allows the basis for this
claim to be established: that Bluetooth is less resilient than
Wi-Fi and that, given the river is about to flood in S3, there is
a significant risk of node failure. Bluetooth is considered less
resilient than Wi-Fi because of its poorer range, which
reduces the number of nodes an individual node may
communicate with, so increasing the likelihood of a single
node failure hampering communication throughout the
network.

Although the bottom-level claims in Figure 4 aren't
directly monitorable by an m-DAS at run-time, some of their
supporting claims are. Thus, if the m-DAS discovers at run-

time that when nodes are submerged, Wi-Fi communication
proves no more feasible than Bluetooth, the “Bluetooth too
risky for S3” claim can be invalidated, and the system can
reconsider the decision to use Wi-Fi over Bluetooth in this
target system. Using Bluetooth in this instance would allow
the system to better satisfice its “Energy Efficiency” softgoal
without further harming “Fault Tolerance”, for which it has
no means of satisfaction.

There are 3 bottom-level claims in Figures 4 & 5, and if
we were to attempt to devise testing scenarios for every
combination of claims we would be attempting to create 7
additional scenarios, not all of which would be feasible or
even necessarily possible. The scenario in which all claims

Figure 4. GridStix Behaviour Model for S3 (Flood)

Figure 5. GridStix Claim Refinement Model for S3 (Flood)

295

hold is the anticipated target system, for which appropriate
testing scenarios would be created as a matter of course.

An analysis of all the claims by a domain expert yielded
four monitorable claims, of which two were classed
qualified, and two uncertain.

 The analyst had qualified confidence in the “Single
Node [Image Processing] reduces accuracy” claim because
the time taken to perform image analysis on a single node is
significant, and there is a possibility of the river's state
having changed significantly in the meantime. Given the
obvious possibility of nodes becoming submerged or
damaged when the river floods, the "Faults Likely in S3"
claim was likewise classed as qualified.

The claims "SP is less resilient than FH" and "Bluetooth
is less resilient than Wi-fi" were both considered uncertain
because the analyst was not certain whether the theoretically
more resilient option in each case would actually prove
demonstrably more resilient in the field.

Propagating the “unbreakable”, “qualified”, and
“uncertain” labels throughout the tree depicted in Figure 5, it
becomes apparent that two of the three bottom-level claims
could be impacted by an uncertain claim being proven false
at runtime, thus offering the potential for emergent
behaviour. The “Single Node Reduces Accuracy” claim,
however, derives qualified confidence from its supporting
claims.

 In the entire GridStix system, only one of the bottom-
level claims was assessed to be directly monitorable, which
is understandable given their broad nature. However, a
significant number of bottom-level claims could be
monitored indirectly, via monitoring of their supporting
claims and analysis of the claim refinement model. In Figure
6, the claim refinement model from Figure 5 is annotated to
show the unbreakable, qualified and uncertain claims. The
claims in Figure 6 that are labelled as either qualified or
uncertain that are not also labelled monitorable are these
indirectly monitorable claims.

As figure 6 shows, for the S3 target system, there are no
bottom-level claims classified as unbreakable, one
considered qualified and two considered uncertain. Creating
test scenarios for all combinations of uncertain claims, that is
the scenarios with greatest potential to uncover emergent
behaviour, would require only 22−1 (i.e. 3) scenarios, as
opposed to the original 23−1 (i.e. 7) scenarios.

The same analysis was performed on the claim
refinement models for the other two GridStix target systems:
S1 and S2. The results of the analysis for all three are
depicted in Table I.

TABLE I. GRIDSTIX BOTTOM-LEVEL CLAIM DISTRIBUTION
BY TARGET SYSTEM

Target System Unbreakable
Claims

Qualified
Claims

Uncertain
Claims

S1 2 1 2

S2 1 0 2

S3 0 1 2

The S1 target system stands out as having the largest
number of bottom-level claims (5), which is representative of
the complexity of the trade-offs in system design made for
this domain. The S1 domain prioritises “Energy Efficiency”
particularly highly, with a delicate balance needing to be
struck between it and the other, conflicting, softgoals. In [19]
we suggested that the rationale recorded with claims should
be as close as possible to that actually used, to maximise the
technique’s benefit in terms of traceability. From a
monitoring and testing perspective, recording the same
rationale, albeit imprecisely, using fewer claims would be
advantageous. Hence, there is a tension between the needs of
tracing and testing with the number of bottom-level claims
used in S1 reflecting a bias towards tracing. Although
removing unbreakable claims from consideration in this
domain seems particularly effective, perhaps due to this
tracing bias, we would consider the second two domains
more indicative of the scenario reduction method’s
performance in general.

Figure 6. GridStix Claim Refinement Model for S3 (Flood) Annotated with Claim Classifications

296

Table II shows the numbers of additional testing
scenarios needed to test for emergent behaviour in each
(potentially modified) target system for all claims, qualified
claims and uncertain claims respectively. This shows that
using our strategy, the number of testing scenarios for S1,
even though it has 5 bottom-level claims, could be restricted
to 3 (testing for uncertain claims only) or 7 (qualified and
uncertain claims).

TABLE II. EMERGENT BEHAVIOUR TESTING SCENARIOS
FOR GRIDSTIX SYSTEM

Target System All Scenarios Qualified &
Uncertain

Uncertain
Scenarios

S1 31 7 3

S2 7 3 3

S3 7 7 3

Total 45 17 9

Thus, devising testing scenarios for all combinations of
uncertain claims would require 9 scenarios, and for the
qualified and the uncertain claims would require 17
scenarios. Devising scenarios for all combinations of claims
in the GridStix system would require 45 additional scenarios.
By devising testing scenarios for the 17 combinations of
qualified and uncertain claims, all the claim-monitoring
related potential sources of emergent behaviour are covered.
This is of course preferable, but if infeasible, creating the 9
scenarios derived from uncertain claims will still offer some
degree of assurance, although limited by the accuracy of the
claim classification.

The GridStix system is only modestly complex from a
modelling perspective, and the environment in which it
operates although challenging for the system can be
partitioned into a small number of domains. As such, the
numbers of testing scenarios remains fairly low. However,
the case study has shown that our model analysis can offer a
real reduction in the number of test scenarios for an m-DAS'
potentially modified adaptive behaviour without sacrificing
assurance, or alternatively can trade a degree of assurance for
a dramatic reduction in testing workload.

CONCLUSIONS

Designing any degree of autonomy into a system will
have a negative impact on the degree of assurance it is
possible to afford it, and a corresponding increase in the cost
of testing the system to achieve this assurance. The more
autonomy a system has, the more pronounced this assurance
deficiency and testing challenge will become. This key trade-
off is often overlooked by researchers looking at ways to
specify, design and build autonomous systems.

Dynamically Adaptive Systems are a notable class of
system, representing a first step on the road to fully
autonomous systems. Researchers have been making
progress in developing methods to specify, design and build
DASs but the thorny issues of testing and delivering

assurance have been relatively neglected to date. Testing
workload in DASs multiplies with the number of target
systems and potential transitions between them, and this
complexity explosion will only become more pronounced as
systems with greater autonomy are conceived.

The class of Dynamically Adaptive System which we
call an m-DAS load representations of their design-time
models into memory at run-time. Such systems use these
run-time models to not only guide adaptation decisions and
to derive adaptation logic, but also to monitor the
assumptions on which the models were constructed. By re-
evaluating the models in the event of an assumption being
proven false, it becomes possible for an m-DAS to adopt a
configuration that was unforeseen at design time but which
best satisfies the system's requirements in circumstances that
were similarly unforeseen. This sub-class of DAS has a
greater degree of autonomy than previous DASs, and
amplify the difficulty in testing over and above that seen in
traditional DASs.

We have proposed a method of model-directed testing
that addresses the problem of scalability in testing the
adaptive behaviour of DASs, and m-DASs in particular, by
identifying the scenarios most likely to uncover emergent
behaviour. The method allows developers to achieve
assurance when testing all scenarios is simply infeasible.

Even using this method, the testing workload for DAS, or
m-DAS in particular is still considerable, and far greater than
that for a traditional, static system. This additional
complexity is essentially another facet of the inherent
complexity in a DAS, which acts to impede the economic
selection of a DAS or m-DASs solution in situations where a
traditional, static system is feasible even if not perfectly
suited.

Our testing reduction strategy is, of course, dependent on
the quality of the assessment made by domain experts or
other means of analysis of which assumptions are risky. A
monitored assumption that is proven false at run-time, but
classed as qualified when designing testing scenarios still has
the potential to introduce unexpected emergent behaviour if
only the uncertain scenarios were devised and tested against.
Hence, there is a distinct preference for analysing both the
qualified and the uncertain claims. For an m-DAS, it would
be possible to prevent this emergent behaviour at the expense
of the system's autonomy and ability to adapt to these
circumstances even without creating the additional scenarios,
by removing the monitor for assumptions considered safe.
This, of course, is a refinement of the original autonomy vs.
assurance trade-off, and is a decision best left to individual
system designers.

REFERENCES

[1] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pappenberger, P.
Smith, and K. Beven. Gridstix: Supporting Flood prediction using
embedded hardware and next generation grid middleware. In 4th
International Workshop on Mobile Distributed Computing
(MDC’06), Niagara Falls, USA, 2006.

[2] A. Cerpa and D. Estrin “ASCENT: Adaptive self-configuring sensor
networks topologies,” IEEE Trans. Mobile Comput., vol. 3, page.
272, Jul./Aug. 2004.

297

[3] B.H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J.
Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G.M.
Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H.M. Kienle, J. Kramer, M. Litoiu, S. Malek, R.
Mirandola, H.A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D.
Weyns, and J. Whittle, “Software Engineering for Self-Adaptive
Systems: A Research Roadmap,” Software Engineering for Self-
Adaptive Systems, Springer-Verlag, 2009, pp. 1-26.

[4] H. Goldsby, D. Knoester, and B. H. C. Cheng, Digitally evolving
models for Dynamically Adaptive systems. In SEAMS ’07:
Proceedings of the ICSE Workshop on Softwate Engineering for
Adaptive and Self-Managing Systems, Minnesota, USA, 2007.

[5] P.-C. David and T. Ledoux. Towards a framework for self-adaptive
component-based applications. In DAIS ‘03 Proceedings of the
International Conference on Distributed Applications and
Interoperable Systems, Paris, France, 2003.

[6] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl and P. Steenkiste.
Rainbow: architecture-based self-adaptation with reusable
infrastructure. Computer, vo.l 37 no. 10, pages 46-54, Oct 2004.

[7] P.K. McKinley, S. M. Sadjadi, E. P. Kasten and B. H. C. Cheng. A
taxonomy of compositional adaptation. Technical Report MSU-CSE-
04-17 Department of Computer Science and Engineering, Michigan
State University, 2004.

[8] J. Kramer J. and J. Magee Self-managed systems: an architectural
Challenge. In Future of Software Engineering. International
Conference on Software Engineering. IEEE Computer Society,
Washington, DC, 259-268, 2007.

[9] S. White, J. Hanson, I. Whalley, D. M. Chess, J. Kephart, An
architectural approach to autonomic computing, IN ICAC’04:
Procedings of the 1st International Conference on Autonomic
Computing, 2004.

[10] P. Grace, G. Coulson, G. Blair, L. Mathy, D. Duce, C. Cooper, W. K.
Yeung, and W. Cai. Gridkit: pluggable overlay networks for grid
computing. In Symposium on Distributed Objects and Applications
(DOA), Cyprus, 2004.

[11] M. Roman, F. Kon, and R. H. Campbell. Reflective middleware:
From the desk to your hand. IEEE DS Online, Special Issue on
Reflective Middleware, 2(2), 2001.

[12] H. Goldsby, P. Sawyer, N. Bencomo, B. H. C. Cheng, and D. Hughes.
Goal-Based modelling of Dynamically Adaptive System
requirements. In ECBS ’08: Proceedings of the 15th IEEE
International Conference on Engineering of Computer-Based
Systems, Ireland, 2008.

[13] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In ICSE ’06: Proceedings of the 28th
international conference on Software engineering, pages 371–380,
New York, NY, USA, 2006. ACM Press.

[14] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal directed
requirements acquisition. In IWSSD: Selected Papers of the Sixth
International Workshop on Software Specification and Design, pages
3–50, 1993.

[15] E. S. K. Yu. Towards modeling and reasoning support for early-phase
requirements engineering. In RE ’97: Proceedings of the 3rd IEEE
International Symposium on Requirements Engineering (RE’97),
Washington, DC, USA, 1997.

[16] B. H. C. Cheng, Pete Sawyer, Nelly Bencomo and Jon Whittle. A
goal-based modelling approach to develop requirements of an
adaptive system with environmental uncertainty. In MODELS 09:
Procedings of IEEE 12th International Conference on Model Driven
Engineering Languages and Systems. Colorado, USA, 2009.

[17] G. Brown, B. H. C. Cheng, H. Goldsby, J. Zhang. Goal-oriented
specification of adaptation requirements engineering in adaptive
systems. In SEAMS ’06: Proceedings of the International Workshop
on self-adaptation and self-managing systems. Shanghai, China,
2006.

[18] J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore, “A
Framework for Proactive Self-adaptation of Service-Based
Applications Based on Online Testing,” Proceedings of the 1st
European Conference on Towards a Service-Based Internet, Madrid,
Spain: Springer-Verlag, 2008, pp. 122-133.

[19] D. M. Berry, B. H. Cheng, and J. Zhang. The four levels of
requirements engineering for and in dynamic adaptive systems. In
11th International Workshop on Requirements Engineering
Foundation for Software Quality (REFSQ), 2005.

[20] K. Welsh and P. Sawyer. Requirements tracing to support change in
Dynamically Adaptive Systems. In REFSQ ’09: Proceedings of the
15th International Working Conference on Requirements
Engineering: Foundation for Software Qulity, Netherlands, 2009.

[21] L. Chung, B. Nixon, E. Yu and J. Mylopolous. Non Functional
Requirements in Software Engineering. Kluwer Academic Publishers.
2000.

[22] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu. Towards
requirements-driven autonomic systems design. In DEAS ’05:
Proceedings of the 2005 Workshop on Design and Evolution of
Autonomic Application Software, pages 1-7, St. Louis, MO, USA,
2005.

[23] G. Blair, N. Bencomo, and R. France. Models@runt.time, IEEE
Computer, October 2009.

[24] University of Toronto. Organizational Modelling Environment.
Available at: http://www.cs.toronto.edu/km/ome/

[25] D. Cohen, M. S. Feather, K. Narayanaswamy, and S. S. Fickas.
Automatic monitoring of software requirements. In ICSE ’97:
Proceedings of the 19th International Conerence on Software
Engineering, pages 602–603, Boston, Massachusetts, United States,
1997.

298

